英语人>网络例句>黎曼 相关的搜索结果
网络例句

黎曼

与 黎曼 相关的网络例句 [注:此内容来源于网络,仅供参考]

We establish an asymptotic Lipschitz homotopy invariance theorem for these K-homology groups and K-theory groups. We show that the asymptotic index maps are isomorphisms for the asymptotically scaleable spaces, which include Euclidean cones, simply connected complete Riemannian manifolds with nonpositive curvature.

我们证明了这些K-同调群和K-理论群具有渐近Lipschitz同伦不变性;对于渐近可标度的几何空间(包括欧氏锥、单连通非正曲率完备黎曼流形等),证明了渐近指标映射为同构。

In the second chapter, we investgate the Type II singularity of mean curvature flow of compact hypersurface in Riemannian manifold.

在第二章中我们讨论了一般黎曼流形中紧致超曲面在平均曲率流下的形变并且对它们的第二类奇点进行了分析。

Simons [30] proved the non-existence theorem for stable integral current in acompact Riemannian submanifold isometrically immersed into a unit sphere andvanishing theorem for homology groups. In 1984, Y. L. Xin [47] generalized theLawson-Simon\'s nonexistence theorem for stable integral current and vanishingtheorem for homology groups to the case of compact submanifolds in Euclideanspace, and gave several important applications.

Simons运用Federer-Fleming存在性定理[19]和几何测度论中变分技巧证明了单位球面中紧致黎曼子流形上稳定积分流的不存在性定理和同调群消没定理[30]。1984年,忻元龙将Lawson-Simons稳定积分流的不存在性定理和同调群消没定理拓广到了欧氏空间中紧致子流形的情形,并给出了若干重要的应用[47]。1997年,K。

Simons [30] proved the non-existence theorem for stable integral current in acompact Riemannian submanifold isometrically immersed into a unit sphere andvanishing theorem for homology groups. In 1984, Y. L. Xin [47] generalized theLawson-Simons nonexistence theorem for stable integral current and vanishingtheorem for homology groups to the case of compact submanifolds in Euclideanspace, and gave several important applications.

Simons运用Federer-Fleming存在性定理[19]和几何测度论中变分技巧证明了单位球面中紧致黎曼子流形上稳定积分流的不存在性定理和同调群消没定理[30]。1984年,忻元龙将Lawson-Simons稳定积分流的不存在性定理和同调群消没定理拓广到了欧氏空间中紧致子流形的情形,并给出了若干重要的应用[47]。1997年,K。

Therefore, it is not every Newton indefinite integral that can carry on Riemann integral, and not every Riemann integral has Newton Indefinite integral.

牛顿所积分的函数都是连续的,可分为牛顿不定积分和牛顿定积分,而黎曼所积分的函数又是有界的。

The zeta function of Euler and Riemann, expressed as an infinite series and a curious product over all primes.

该zeta函数的欧拉和黎曼,表达了作为一个无穷级数和好奇的产品超过所有素数。

Zack Lemann, Visitor Programs Manager at the Audubon Insectarium, goes on to explain the exhibits with contagious enthusiasm.

查克黎曼是奥杜邦昆虫馆的访客计画负责人,他用有感染力的热情来解释了这些展览。

And it makes a detailed and brief exposition, and offers some extremely targeted examples of the application, in order to understand the integrability conditions and enhance the understanding and application capability.

文章最后专门讨论了复合函数的黎曼可积性和可积函数列的逐项积分,得出了如何根据特定条件来判断一个复合函数可积性的定理和判定一个函数列可逐项积分的一个充分条件,并将其推广,得到一个更弱的充分条件。

Say from the angle of mathematics, This software mainly plays to show the integral calculus of Bernhard Riema , together two heavy integral calculuses of a function.

从数学的角度说,本软件主要将演示黎曼积分、齐次函数的二重积分。

The problem of sub-Riemannian geodesics is a Lagrange problem with constraint. How to describe the constraint condition "γ'∈ D, a. e." is a difficult problem.

黎曼测地线问题是变分学中的一个有约束的Lagrange问题,但在变分的过程中有个难点―如何推出约束条件"γ'∈D,在上几乎处处成立"的解析式。

第7/18页 首页 < ... 3 4 5 6 7 8 9 10 11 ... > 尾页
推荐网络例句

On the other hand, the more important thing is because the urban housing is a kind of heterogeneity products.

另一方面,更重要的是由于城市住房是一种异质性产品。

Climate histogram is the fall that collects place measure calm value, cent serves as cross axle for a few equal interval, the area that the frequency that the value appears according to place is accumulated and becomes will be determined inside each interval, discharge the graph that rise with post, also be called histogram.

气候直方图是将所收集的降水量测定值,分为几个相等的区间作为横轴,并将各区间内所测定值依所出现的次数累积而成的面积,用柱子排起来的图形,也叫做柱状图。

You rap, you know we are not so good at rapping, huh?

你唱吧,你也知道我们并不那么擅长说唱,对吧?