首项系数
- 与 首项系数 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Finally obtains, when besides first item and absolute term, sum of the other coefficient for odd number, this integer polynomial does not have the rational root.
最后得出,除首项和常数项外,当其余各项系数之和为奇数时,该整系数多项式无有理根。
-
In chapter 3,we investigated the relationship between exponent of convergence to zero - sequence of the solution of certain homogeneous linear differential equation f + Af = 0 and the order of growth of A.
第四部分研究了一类二阶线性微分方程f+Q_1e~(p_1+Q_2e~(p_2)+Q/df=0中p_1,p_2首项系数的比值对方程解的零点收敛指数的影响,并推广到更广泛一类方程。
-
This test method is called integer-variation test, and it is based on the statistical distribution of the fractional part of a random variable multiplied by an appropriate integer.
证明了首项系数为整数的n个独立随机变量和的小数部分的统计分布性质,并证明了当求和个数趋于无穷时的统计分布性质。
-
The Mahler measure of a polynomial P is the absolute value of the product of all roots of P that have modulus at least 1 multiplied by the leading coefficient.
中文摘要:多项式的Mahler测度指的是它的所有模大于1的根与其首项系数的乘积的绝对值。
-
Then we use Cramer\'s rule to obtain an estimate of the degree in q~(1/2) of the leading coefficient of the recurrence.
而后利用Cramer法则得到迭代关系首项系数中q~(1/2)的次数的一个估计。
-
Firstly, we prove a proposition : the leading coefficient regarded as a polynomial in q~n, q~(1/2 of the recurrence is not equal to zero for all n ≥ [m/2] + 1, where m is the degree in q~(1/2) of the leading coefficient.
首先,我们证明了一个命题:迭代关系的首项系数关于q~n,q~(1/2的多项式对所有的n≥1[m/2]+1均不为零,其中m为首项系数中q~(1/2)的次数。
-
Depending on the coefficient of the polynomial, we can easily compute the number of modular addition of A mod p by the formulas for any given irreducible monic trinomial and monic pentanomial.
根据该表达式,对任意给定的不可约首一三项式和首一五项式,可以根据该多项式的系数分别得出以广义Mersenne数为模数的取模运算所需要的模加法的次数。
- 推荐网络例句
-
Plunder melds and run with this jewel!
掠夺melds和运行与此宝石!
-
My dream is to be a crazy growing tree and extend at the edge between the city and the forest.
此刻,也许正是在通往天国的路上,我体验着这白色的晕旋。
-
When you click Save, you save the file to the host′s hard disk or server, not to your own machine.
单击"保存"会将文件保存到主持人的硬盘或服务器上,而不是您自己的计算机上。