首先
- 与 首先 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
To find this angle, we first work out general algebraic expression for the range.
为求这一角度,首先我们求出射程的一般代数表达式。
-
To find this angle, we first work out g eral algebraic expression for the range.
为求这一角度,首先我们求出射程的一般代数表达式。
-
The relationship between stress and strain of concrete in prestressed concrete bridge s is written as algebraic form within load duration and the equilibrium equations of internal force and compatibility conditions are introduced.
首先将预应力混凝土桥梁中考虑收缩、徐变影响的任意时刻混凝土应力、应变关系在持荷时段内写成代数形式,引入内力平衡方程及变形协调条件后,提出了计入截面上钢筋位置、配筋率、预应力钢筋松弛、混凝土弹性模量随时间变化等影响的徐变效应分析的全量形式自动递进法,并建立了计算式,适用于任何形式的收缩、徐变特性表达式;基于建立的全量形式公式,可方便地求解任意时刻混凝土、钢筋的应力与应变和梁体竖向变形。
-
First,the basic formulas solving the artificial earthquake wave compatible with object response spectra are established;the integration equations are translated into the algebraic equations by interpolation function.
首先,从单质点系在地震作用下的反应出发,直接推导了求解与目标反应谱拟合的人造地震动基本公式;随后,利用插值函数将积分方程变换为代数方程组,进而从反应谱的变分求得人造地震动的时域变分。
-
Given a planar point set,the moving least squaremethod is adopted to denoise and resample it so that the resulting point set is with low noise and uniform sampling density.Then the reliable signed distance field of the preprocessed point set is constructed by using the Level Set method.Finally,an algebraic B-spline function is adopted to fit the signed distance field by solving a linear equation system.
首先给定一个表示封闭曲线、可能带有噪音且分布不均匀的平面点云,采用移动最小平方(moving least square,简称MLS)方法对点云去噪、重采样,得到一个低噪音、分布均匀的"线状"点云,再通过Level Set方法建立该"线状"点云的离散几何距离场,最后用一个代数B-样条函数光顺拟合该离散距离场,代数函数的零点集即为重建曲线。
-
We obtain that if any 〓 is discrete or elementaryand 〓 satisfies Condition A,then the algebraic limit G of group sequence 〓is discrete or elementary.
首先,我们不再仅仅考虑离散非初等群集〓的代数极限G,而是离散群或初等群群集〓的代数极限G,我们对〓上〓变换群中斜驶元及其不动点进行了细致研究,注意到任意一个斜驶元存在一个仅仅含有斜驶元的领域,从而证明了初等群群集〓的代数极限G仍然是初等群,进而我们得到了一个代数收敛定理:如果任一〓是离散群或者初等群并且〓满足条件A,那么,群列〓的代数极限G一定是离散群或者初等群。
-
Main work follows:(1) In the first part of this paper, a historical development of the number theory before Gauss is reviewed.Based on the systematic analysis of Gauss"s work in science and mathematics, inquiry into the mathematical background that Disquisitiones Arithmeticae appeals and Gauss"s congruent theory;(2) The development process of Fermat"s little theorem and its important function in the compositeness test is elaborated through original literature.we think that the first three section of Disquisitiones Arithmeticae is a summary and development for ancestors" work about Fermat"s little theorem,show that Fermat"s little theorem played an important role in the elementary number theory;(3) With the two main sources of the quadratic reciprocity law, investigating Fermat,Euler,Lagrange,Legendre, until the related work of Gauss,the way to realize the laws huge push to the development of algebraic number theory in 19 centuries.
本文主要做了以下工作:(1)首先回顾了高斯之前的数论研究状况,在系统分析高斯的科学与数学成就的基础上,探讨了《算术研究》出现的数学背景和高斯的同余理论;(2)通过对原始文献的系统解读,深入分析了费马小定理发现发展的历程以及在素性检验中的重要作用,指出《算术研究》前三节是高斯在总结并发展了前人对该定理研究的基础上形成的,并揭示了费马小定理在初等数论定理证明中的核心地位;(3)以二次互反律的两个主要来源为线索,详细考察了费马,欧拉,拉格朗目,勒让德,直到高斯的相关工作,揭示了该定律对十九世纪数论发展的巨大推动作用。
-
Based on an introduction to the robust control of uncertain linear systems and a survey on the past and recent contributions to the related polynomial algebraic method, state space method and frequency domain method, this dissertation focuses on the robust control problem of uncertain linear systems in frequency and time domain.
本文首先就不确定线性系统的鲁棒控制问题作一扼要的介绍和概括,并分多项式代数方法、状态空间方法和频率域方法对其历史发展及其研究现状进行了比较全面的综述。
-
This paper reviews the historical development of the algebraic solutions of polynomial equations, introduces the life and scientific achievements of Cardano together with the historical background of Ars Magna. Based on this, the paper makes an elaborate study on Ars Magna.
本文首先回顾了多项式方程代数解法的发展过程,介绍了卡尔达诺的生平、科学与数学成就以及《大术》的历史背景,然后在此基础上详细研究了《大术》各章的内容。
-
Secondly, by applying inverse Fourier integral transform to the displacement, and uniting the constitutive and geometrical equations, the analytical expression of stress in Laplace domain were derived. Thirdly, by defining dislocation density functions, the Cauchy singular integral equations were obtained according to the boundary condition and interface connection conditions, and the problem was reduced to algebraic equations by Chebyshev orthogonal polynomial. Based the these, the unknown coefficient of the algebraic equations can be solved by Schmidt method. Finally, the time response of dynamic stress intensity factor and energy release rate are obtained by inverse Laplace transform.
首先,利用积分变换方法,推导出粘弹性层的控制方程组;其次,引入位错密度函数,并结合边界条件和界面连接条件,导出反映裂纹尖端奇异性的Cauchy型奇异积分方程组,然后,应用Chebyshev正交多项式化奇异积分方程组为代数方程组,并采用Schmidt方法对其数值求解,最后,经过Laplace逆变换,求得动态应力强度因子和能量释放率的时间响应。
- 推荐网络例句
-
And Pharaoh spoke to Joseph, saying, Your father and your brothers have come to you.
47:5 法老对约瑟说,你父亲和你弟兄们到你这里来了。
-
Additionally, the approximate flattening of surface strip using lines linking midpoints on perpendicular lines between geodesic curves and the unconditional extreme value method are discussed.
提出了用测地线方程、曲面上两点间短程线来计算膜结构曲面测地线的方法,同时,采用测地线间垂线的中点连线和用无约束极值法进行空间条状曲面近似展开的分析。
-
Hey Big Raven, The individual lies dont matter anymore - its ALL a tissue of lies in support of...
嘿大乌鸦,个别谎言的事不要再-其所有的组织的谎言,在支持。