非齐次的
- 与 非齐次的 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
First of all, Newton-Cotes integral formula is used to calculate the special solution of nonhomogeneous equation in Duhamel integral form for linear system.
首先对于线性问题,利用等步长的Newton-Cotes积分公式计算非齐次方程Duhamel积分形式的特解。
-
The semiboundless mixed problem of the fractional diffusion equation with the third kind nonhomogeneous boundary condition is studied.
研究了一维半无界分数阶扩散方程具有第三类非齐次边条件的混合问题。
-
Is the general solution of the equation .
是二阶非齐次线性方程的通解。
-
In the third chapter, some results of inhomogeneous abstract delay equations are given.
在第三章中,给出了非齐次抽象时滞方程的一些结果。
-
The strong law of large numbers for functions of one variable of missing data of nonhomogeneous Markov chains is studied.
为研究非齐次马氏链缺失数据一元函数的强大数定律。
-
This article is going to study the convergence and rate of convergence about nonhomogeneous Markov chains.
本文主要研究非齐次马氏链的收敛及收敛速度。
-
At last,we extend the Shannon-McMillan theorem to the nonhomogeneous Markov chain fields.
最后我们将Shannon-McMillan定理推广到非齐次马氏链场的情形。
-
In the third chapter,we study the rate of convergence of nonhomogeneous Markov chains and the absolute average strong ergodic.
第三章研究一类非齐次马氏链的收敛速度及绝对平均强遍历性。
-
Thequasi-conforming element methods are the exact solutions of generalized compatibilityequation and satisfy the weak continuity requirement naturally.
叙述了弱形式的弹性力学哈密顿正则方程,边界条件作为非齐次项,以便于采用数值、半解析和解析计算方法。
-
Finally,usingHodge decomposition theorem,domain variations theory and capacitytheory,we prove that the continuity of very weak solutions of a classof nonlinear elliptic equations on varying domains.
最后,使用Hodge分解、区域拓朴和容量理论,我们证明了一类非齐次半线性椭圆型方程很弱解关于区域的连续依赖性。
- 推荐网络例句
-
Breath, muscle contraction of the buttocks; arch body, as far as possible to hold his head, right leg straight towards the ceiling (peg-leg knee in order to avoid muscle tension).
呼气,收缩臀部肌肉;拱起身体,尽量抬起头来,右腿伸直朝向天花板(膝微屈,以避免肌肉紧张)。
-
The cost of moving grain food products was unchanged from May, but year over year are up 8%.
粮食产品的运输费用与5月份相比没有变化,但却比去年同期高8%。
-
However, to get a true quote, you will need to provide detailed personal and financial information.
然而,要让一个真正的引用,你需要提供详细的个人和财务信息。