非代数的
- 与 非代数的 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
We obtain that if any 〓 is discrete or elementaryand 〓 satisfies Condition A,then the algebraic limit G of group sequence 〓is discrete or elementary.
首先,我们不再仅仅考虑离散非初等群集〓的代数极限G,而是离散群或初等群群集〓的代数极限G,我们对〓上〓变换群中斜驶元及其不动点进行了细致研究,注意到任意一个斜驶元存在一个仅仅含有斜驶元的领域,从而证明了初等群群集〓的代数极限G仍然是初等群,进而我们得到了一个代数收敛定理:如果任一〓是离散群或者初等群并且〓满足条件A,那么,群列〓的代数极限G一定是离散群或者初等群。
-
We describe the algebraic characteristic of the public-key cryptosystems based on algebraic structures such as elliptic curves,bilinear pairings,as well as braid group s,with the emphasis on the difficulties of constructing public-key cryptosystems based on non-commutative algebraic structures.
通过分析基于椭圆曲线、双线性对以及基于辫子群的公钥密码体制的代数学特征,着重讨论了构建基于非交换代数的公钥密码体制所面临的困难。
-
The cohomology of q-polynomial coalgebras with coefficients in trivialcomodule K are also determined(see Theorem 6.3.11).Having obtained Theorem 5.2.3 andTheorem 5.2.4,we determine(see Theorem 7.2.6)all the nonzero 〓.
对于这一类q-多项式余代数,我们决定了(见定理6.3.11)系数在它的平凡余模K中的上同调,有了定理5.2.3与定理5.2.4以后,我们决定了(见定理7.2.6)所有非零的〓。
-
Ringrose began to study nest algebras in the 1960s, many people have devoted themselves to the study of non-selfadjoint and reflexive operator algebras including nest algebras, commutative subspace lattice algebras, completely distributive subspace lattice algebras and so on, and obtain a lot of beautiful achievements.
自从60年代J.Ringrose开始研究套代数以来,人们对套代数、交换子空间格代数和完全分配子空间格代数等非自伴自反算子代数进行了深入研究,并且取得了大量出色的研究成果。
-
Because Horn-clause logic theory is of significance in both respects of theory and application, We especially studied lattice-valued Horn-clause logic with truth-value in lattice implication algebra, and the soundness and completeness theorem have been proved.
经典逻辑中,Horn子句逻辑理论具有广泛的应用,因而,本文中特别建立了基于格蕴涵代数的格值-类Horn子句逻辑,并证明了可靠性和完备性定理,这为建立一类基于格值逻辑这种非经典逻辑的人工智能语言将产生重要的作用。
-
In this paper well use this covariant theory to discuss the prolongation structure of the integrable the inhomogeneous equation of the reaction-diffusion type: By establishing SL(2,R)principal bundle and its associated bundle and finding both 1-dimensional realization and 2-dimensional realization of its algera ,we can successfully give its AKNS-equations and Backlund transformation.
本文就是利用这套协变的延拓结构方法讨论了可积的非其次反应扩散型方程的延拓结构。通过建立SL(2,R)主丛及其伴丛,并找到其李代数的1维和2维实现,我们成功得到了其反散射方程和Backlund变换。
-
In section 1 and section 2, I present a simple overview of the bosonic realization of the SU(1,1) Lie algebra, single-mode SU(1,1) coherent states and their main non-classical properties.
第一部分和第二部分,对SU(1,1)李代数的玻色子算符实现形式,单模SU(1,1)相干态及其主要的非经典特性进行了简单的回顾。
-
The major technique to get the information of structure of those free groups is to sudy the action of automorphisms on them. In this paper we show that every normal automorphism of a nontrivial free product of groups is inner as well. Traub[16] made a purely algebraic conjecture and showed that it implied Poincare"s Conjecture. He also showed that Poincare"s Conjecture implied this algebraic conjecture modulo another topological hypothesis.
在本文中我们给出任意两个非平凡群的自由积的每个正规自同构也是内自同构的;在文献[16]中,Traub给出了一个纯代数的猜想并证明了这个猜想蕴含着着庞加莱猜想的成立,并且作者也证明了在一个拓扑假设的前提下庞加莱猜想也同时蕴涵着猜想1是成立的,后来这个拓扑假设被Waldhausen([7])证明是成立的。
-
Its main goal is to explore information in the K-theory groups of the index C*-algebras, the Roe algebras C*, by using the large-scale geometrical structure of proper metric spaces, including noncompact complete Riemannian manifolds, finitely generated groups, etc., so as to establish connections among geometry, topology and analysis of the geometric spaces, and furthermore, to solve other relating problems, say, the Novikov conjecture, the Gromov-Lawson-Rosenberg conjecture on positive scalar curvature, the idempotent problem in the theory of C*-algebras.
粗几何上的指标理论是"非交换几何"领域九十年代以来发展起来的重要研究方向,它孕育于非紧流形上的指标理论,其主要目标是通过几何空间(如非紧完备黎曼流形、有限生成群等)的大尺度几何结构探索指标代数,即 Roe代数,的K-理论群的信息,从而建立几何空间的几何、拓扑与分析之间的联系,并应用于解决其他重要问题,如Novikov猜测、Gromov-Lawson-Rosenberg正标量曲率猜测、群C*-代数幂等元问题等。
-
In Chapter 2, starting from a generalization of Hensel's Lemma to non-commutative case, we introduce the Brauer characters and the generalized decomposition numbers, and construct a kind of maximal semisimple algebras; then, similarly to Puig's methods, we prove Brauer's Second Main Theorem over arbitrary fields; applying it to blocks with nilpotent coefficient extensions, a formula on characters of such blocks is given; the formula of characters of nilpotent blocks is just an easy consequence of the fomula.
在第二章中,我们将Hensel的引理推广到非交换的情况,以此为起点,定义了Brauer特征标和广义分解数,构造了一类极大的半单的代数,类似于Puig的方法,给出了任意域上Brauer的第二主要定理;作为该定理的应用,我们给出了具有幂零系数扩张的块的特征标公式,幂零块的特征标公式只是它的一个简单的推论。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。