英语人>网络例句>集市 相关的搜索结果
网络例句

集市

与 集市 相关的网络例句 [注:此内容来源于网络,仅供参考]

The characteristics of data ''.'marts'.'' are

数据集市的模式都是相似的。

Myth 4. Dimensional models and data marts are only appropriate when there is a predictable usage pattern .

误区4:维度模型和数据集市只有在有一个可预见的使用模式的时候才适用。

On the contrary, because of their symmetry, the dimensional structures in our data marts are extremely flexible and adaptive to change.

相反,由于其对称性,我们的数据集市中的维度结构对于变化具有很好的灵活性和适应性。

Data warehouse and data marts are very similar technologies, say experts, but they usually service different types of clients.

专家称,数据仓库和数据集市是非常相像的技术,但它们服务于不同类型的客户。

For that kind of slice-and-dice analysis, data marts use multidimensional databases geared for quick responses with multiple elements.

对于那种细微的分析,数据集市采用为快速响应进行修改的、拥有多个单元的多维数据库。

Virtual marts are often used only for a few days or weeks, so system resources are quickly reclaimed.

虚拟集市经常只用数天或几个周,所以系统资源可以很快回收

We know how to work with databases, data marts and data warehouses, because information in those places is carefully structured and massaged.

我们知道如何与数据库、数据集市和数据仓库打交道,因为在这些地方的信息是被仔仔细细地结构化和管理着。

The data in data warehouses and data marts is usually updated frequently, and the data loads are typically very large.

数据仓库和数据集市中的数据通常会频繁更新,因此数据加载量通常会很大。

Our data marts also will include commonly requested summarized data in dimensional schemas.

我们的数据集市也将包括普遍请求的维度模式的汇总数据。

The paper presents the history, concept and architecture of data warehouse, and the similarity and difference between database and data warehouse, as well as the concepts of metadata and data marts. It also introduces the history and development of decision support system.

本文介绍了数据仓库产生的背景,及其与数据库的联系与区别,数据仓库的概念、特点,元数据和数据集市的概念,及数据仓库系统的体系结构;决策支持系统的发展历程,基于数据仓库的决策支持系统。

第24/29页 首页 < ... 20 21 22 23 24 25 26 27 28 ... > 尾页
推荐网络例句

I didn't watch TV last night, because it .

昨晚我没有看电视,因为电视机坏了。

Since this year, in a lot of villages of Beijing, TV of elevator liquid crystal was removed.

今年以来,在北京的很多小区里,电梯液晶电视被撤了下来。

I'm running my simile to an extreme.

我比喻得过头了。