隐
- 与 隐 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Based on the unstructured model of Nosiheptide fermentation process, the secondary variables were selected according to the implicit function existence theorem, which made the selection theoretically strict.
在诺西肽发酵过程非结构模型的基础上,根据隐函数存在定理确定出辅助变量,从而使其选择有严格的理论依据。
-
Then,the system is linearized by variational approach,the local null controllability is proved by applying a generalized implicit function theorem and combining the property of the solution mapping.
首先得到了系统的逼近能控性;然后采用变分方法对系统线性化,再结合解映射的性质,应用推广的隐函数定理,证明系统的局部零能控性;最后给出系统零能控的结论。
-
Based on the segmented unstructured model of Nosiheptide fermentation process, the secondary variables are selected according to the implicit function existence theorem. The on-line identification of fermentation phases is accomplished by using an indicator variable which is gained by mathematical inference, and for each phase, a local soft sensor model is developed.
首先以分阶段的诺西肽发酵过程非结构模型为基础,根据隐函数存在定理进行辅助变量的合理选择;然后利用经数学推导得到的指示变量"伪比生长率"完成发酵阶段的在线辨识,并采用神经网络构建出对应于各阶段的局部软测量模型。
-
In this project, we intend to combine the above mathematical ideas. First, we consider a wild family of dynamical systems which can be derived into a family of difference equations. Then using a generalized version of the implicit function theorem which we will establish, we want to show that for any dynamical systems near 「singular limit」, there exists a horseshoe structure and hence chaotic phenomena occur.
在此研究计画中,我们打算结合上述的数学结论与想法,进一步考虑一类能够转化成差分方程的动态系统函数族,使用即将建立的推广性隐函数定理,我们希望证明当参数接近奇异极限时,动态函数会具有马蹄结构所以有混沌现象。
-
According to the estimation of biomass in Nosiheptide fermentation process, the secondary variables are selected according to the implicit function existence theorem, and then a soft sensor model of biomass is developed by using the IBPNN. The testing result shows the effectiveness of the presented approach.
最后针对诺西肽发酵过程中菌体浓度的估计问题,根据隐函数定理选取辅助变量,应用IBPNN建立菌体浓度软测量模型,实验结果验证了所提方法的有效性。
-
A kind of one parameter planar singular perturbation equation is studied by the qualitative theory of ordinary differential equations, asymptotic analysis methods, implicit function theorem and fixed point methods.
本文应用微分方程定性理论、渐进分析方法、隐函数定理以及不动点理论的方法研究一类单参数二维奇异摄动系统。
-
Then, the system is linearized by variational approach, the local null controllability is proved by applying a generalized implicit function theorem and combining the good property of the solution mapping.
首先通过对系统线性化,构造泛函,利用对偶方程,给出控制函数具体形式的办法得到系统的逼近能控性;然后采用变分方法对系统线性化,再结合解映射好的性质,应用推广的隐函数定理,证明系统的局部零能控性;最后利用局部零能控性和逼近能控性结合给出系统零能控的结论。
-
In addition, as we'll see in Chapter 7, implicit conversions also occur during function calls.
另外,在函数调用中也可能发生隐式类型转换,我们将在第七章学习这方面的内容。
-
Week 6 The derivative of implicit function.
第6周 隐函数的导数。
-
The function of implicit value was positive too.
个体内隐价值观的评价倾向是积极的。
- 推荐网络例句
-
Do you know, i need you to come back
你知道吗,我需要你回来
-
Yang yinshu、Wang xiangsheng、Li decang,The first discovery of haemaphysalis conicinna.
1〕 杨银书,王祥生,李德昌。安徽省首次发现嗜群血蜱。
-
Chapter Three: Type classification of DE structure in Sino-Tibetan languages.
第三章汉藏语&的&字结构的类型划分。