迭代的
- 与 迭代的 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
At first,the negative data is divided into several parts accumulatively according to the geometric distribution of the training data.
该方法首先根据样本的几何分布,用迭代的方式把负样本分成若干部分与正样本线性可分的样本;然后用L-SVM对这些正负样本进行分类,得到若干个线性分类器;最后,将这些线性分类器顺次组合,构成级联分类器。
-
The application of traditional H∞ control theory in power systems demands to optimize Gamma iterative problem.
指出传统的H∞控制理论在电力系统中的应用需要计算Gamma迭代的优化问题。
-
Choosing the countdown length of Hamilton for the fitness function, using "evolutionary reversal" technique, we give the best path among 20 cities with MATLAB, and also make graph of the optimal value change with iteration in optimization process.
取哈密尔顿长度的倒数为适应度函数,采用"进化逆转"操作技术,运用MATLAB求解得到20个城市间的最佳路径,并做出了寻优过程中最优值随迭代的变化趋势图。
-
It shows that the method is very efficient for applications in YiChang Yangtse Rive Bridge.
宜昌长江公路大桥的应用表明,该解析迭代的系统计算方法,收敛速度快、精度高,是一种有效计算方法。
-
At the nodes of the grid, the solutions are determined iteratively.
在网格的节点上,通过迭代的方式进行求解。
-
To iterate is human,to recurse divine.
迭代的是人,递归的是神。
-
This process is iterated as required until a final performance or economic criterion has been met.
这个过程是迭代的要求,直到最后的表现或经济标准已经达到。
-
There are multiple, iterative development sprints, or cycles, that are used to evolve the system.
为了提升系统性能,会有多次的、迭代的开发冲刺或循环。
-
Chapter one: this chapter discuss mainly about the astringency of several deformed Newtons iterative methods and their application in solution of non-differentiable problems.
第一章:主要讨论了几种变形Newton迭代的收敛性问题,以及它们在求解不可导方程中的应用。
-
Based on the iterative bit-filling procedure,a computationally efficient bit and power allocation algorithm is presented.
基于迭代的比特和功率分配机制,提出了一种低复杂度的比特和功率分配算法。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。