证明性的
- 与 证明性的 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
So before applying Mather's theorem of connecting orbits to concrete Hamiltonian system, we have to check whether the set W〓 is empty or not, and which cohomology classes are C-equivalent. In present paper, by investigating the topological structure of action minimizing sets near a co-dimensional one torus which is preserved under generic perturbations and becomes hyperbolic in nearly integrable Hamiltonian system.
与传统的Poincaré-Melnikov方法相比,我们方法明显优越之处在于,一方面我们的方法不仅可以得到双曲环面之间的异宿轨道,而且当该环面附近的其它环面破裂时,可以得到不同Mather集之间的连接轨道,另一方面,我们把异宿轨的存在性的证明转化为双曲环面极小同宿轨的某种弱孤立性的证明,所需条件比Poincaré-Melnikov方法弱得多。
-
Based on the higher mathematics method proved inequalities are summarized, and the proposed using the function extreme value and the monotonicity and concave and convex function sex, and mean value theorem, Taylor formula, integral these common higher mathematics method, combining with concrete examples of each kind of method to solve the problems for type, and the key problem of the specific steps, and points out that the inequality proof of higher mathematics method used properly, improve the difficult easy to ability to solve problems.
本文对不等式证明中的高等数学方法作了归纳总结,提出了利用函数的单调性,极值与最值,函数凹凸性,中值定理,泰勒公式,积分这些常用的高等数学方法,并结合具体实例阐述了每一种方法的适用类型、解决问题的关键和证明问题的具体步骤,指出在不等式证明中恰当地运用高等数学方法可以化难为易,提高解题能力。
-
Firstly, we combine the theories of monotone operator and maximal monotone operator's Yosida approaching with domain method to prove the solution's existence of single input-output equation in R n in the similar economical backgrounds in present articles and then gain the solution's continuity by exterior approaching method,at last we give the responding economical meaning about the solution's existence and continuity.
就R n空间中消耗为单调单值型的投入产出方程,在现有文献类似的经济背景之下,利用单调算子的理论以及极大单调算子的Yosida逼近结合邻域逼近法给出了投入产出方程的解的存在性的证明,然后利用外部逼近法结合方程截断技巧证明了投入产出方程的解的连续性,最后给出了相对应于存在性和连续性的经济解释。
-
Secondly, we combine the theories of monotone operator and maximal monotone operator's Yosida approaching with domain method to prove the solution's existence of set-valued input-output equation in R n in the similar economical backgrounds in present articles too and then gain the solution's continuity by interior approaching method,at last we give the responding economical meaning about the solution's existence and continuity.
对于R n空间中消耗为单调集值型的投入产出方程,也在现有文献类似的经济背景之下,利用单调算子的理论以及极大单调算子的Yosida逼近结合邻域逼近法给出了投入产出方程的解的存在性的证明,接着利用内部逼近法结合方程截断技巧对投入产出方程的解的连续性给予了证明,然后顺便简单的介绍了运用外部逼近法来得到方程的解的连续性的思路,最后也给出了相对应于存在性和连续性的经济意义。
-
This paper is devoted to the existence and multiplicity of the solutions of the homogenous Dirichlet problem for a nonlinear singular elliptic equation with natural growth in the gradient.
研究一类具奇性和退化性的非线性椭圆方程Dirichlet问题,通过构造适当的逼近问题并结合紧致方法,证明了解的存在性和多重性。
-
In elliptic case,the compactness of"convex polyhedrons"is destinedto be true because of the"local Lipschitz continuity of convex functions",whilein parabolic case,we cannot expect convex-monotone functions have such goodproperties as convex functions.
在广义解存在性的证明中,参考椭圆情形由"凸多面体"逼近的思想,我们采用了由一种特殊构造的"凸单调多面体"逼近的途径,但在证明这种凸单调多面体族的紧性时,我们遇到了困难。
-
By introducing the general notion of nonwandering operator semigroup T and utilizing a basic result in normed linear space,the nonwandering property of T=e~ is investigated with the constructive method.
通过给出一般算子半群T的非游荡性概念,利用赋范空间的一个基本结果和直接的构造法证明了具有变系数的线性发展方程的强连续解半群T=etA在适当的条件下是非游荡的;另外,通过对C-半群T概念的引进,定义了一个无界算子半群etA,进一步证明了这二者关于非游荡性的联系;最后给出了一个无界算子半群etP关于非游荡性理论的刻画,其中P是微分多项式。
-
He also extended quasi-geostrophic non-acceleration theorem to primitive equation non-acceleration theorem.
他在国际上首创湿倾斜涡度发展理论和全型垂直涡度方程,成功地揭示青藏高原西南涡和夏季江淮流域的暴雨发展机理,揭示副热带高压形态变异的成因;证明创新的原始方程中的无加速定理以及大气运动的动力强迫和热力强迫的调配率;开展创新性气候动力研究,揭示中高纬和热带海气相互作用差异的机理及厄尔尼诺影响台风频率的机制,继承和发展了我国学者关于青藏高原对大气环流和天气气候影响的研究;在国际上首次把亚洲季风爆发分为三个阶段,证明由于中高纬度的强地转性和斜压性使其海气相互作用的特征与热带显著不同;首次用数值模式提出厄尔尼诺影响台风的机制,得到国际上的高度评价。
-
The projection gradient method will be a possible way to solve the problem that we just get. It has been shown that the projections of the every directions, of which is the boundary point in linear restraint problems, are the possible decent directions, and the projection of negative grads direction is a decent direction. In 1960, Rosen proposed the basic idea of projection gradient methods, and then lots of researchers have been tried to find the convergence of this method. But most of them get the convergence with the condition to amend the convergence itself.
在约束最优化问题的算法中怎样寻找有效的下降方向是构造算法的重要内容,在寻找下降方向方面可行方向法中的投影梯度法有效的解决了下降方向的寻找问题,利用线性约束问题边界点的任意方向在边界上的投影都是可行方向,而负梯度方向的投影就是一个下降方向。60年代初Rosen提出投影梯度法的基本思想,自从Rosen提出该方法以后,对它的收敛性问题不少人进行了研究,但一般都是对算法作出某些修正后才能证明其收敛的,直到最近对Rosen算法本身的收敛性的证明才予以解决。
-
In the study of the Lagrange stability of impact motion, we give some conditions of the bouncing solution of the asymptotically linear equation which is bounded or unbounded. Outside of a large disc, using the symplectic transformation of the Hamilton system to estimate the iteration of the successor map. Applying the Moser's small twist theorem, we get the invariant curves and then give the proof of the bouncing solutions which is bounded. We will estimate the successor map of the equation directly for proving the unboundedness of the bouncing solutions.
在碰撞运动的Lagrange稳定性的讨论中,给出了渐近线性方程碰撞解有界或无界的条件,在充分大的圆盘外,通过Hamilton系统的辛坐标变换的角度平均来估计后继映射的迭代,应用Moser小扭转定理得到不变曲线从而给出在一定条件下碰撞解有界的证明,碰撞解无界性的证明将采用直接估计后继映射的方法给出。
- 推荐网络例句
-
Singer Leona Lewis and former Led Zeppelin guitarist Jimmy Page emerged as the bus transformed into a grass-covered carnival float, and the pair combined for a rendition of "Whole Lotta Love".
歌手leona刘易斯和前率领的飞艇的吉他手吉米页出现巴士转化为基层所涵盖的嘉年华花车,和一双合并为一移交&整个lotta爱&。
-
This is Kate, and that's Erin.
这是凯特,那个是爱朗。
-
Articulate the aims, objectives and key aspects of a strategic business plan.
明确的宗旨,目标和重点战略业务计划。