解析微分
- 与 解析微分 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
According to the theory of PDE, the closed form solution of the model is obtained.
利用偏微分方程理论,求出偏微分方程的解析解。
-
An analytical model describing the dispersion with an exponential dispersion function is built, which be transformed into CDE problem with variable coefficient, using hypergeometric function and inversion technique, an analytical solution for two type boundary conditions is obtained.
文章对于具有指数弥散函数的弥散过程建立了对流-弥散微分方程模型,应用积分变换将问题转化为具有变系数的常微分方程问题;对于两种类型的边界条件,应用超几何函数和反演技术得到了问题的解析解,并分析了指数弥散过程和常数弥散过程的不同性质。
-
The coefficients in trial function can be gained by the point collocation method, then the solution of the boundary value problems is obtained. Non - uniform beams and irregular plates on Winkler foundation and plates on elastic half space foundation can be numerical calculated by the introduced method.
为对土与结构物的相互作用进行研究,在采用适当的土体模型的基础上,必需求解地基与基础的共同作用方程,而该共同作用方程一般是偏微分方程或微分积分方程,除一些简单的模型外,其解析解较难获得,因此只能采用数值方法求其结果,加权残仇法是一种L作鼠少、简便易行的数仇方法{2,但其解的精度'。
-
The governing equation of in-plane vibration of cable-restraint system is derived by means of D'Alembert principle, and then those partial differential equations are transformed into a set of ordinary differential equations by Garlerkin method. The method of Runge-Kutta integration is applied to solve the equation. The simulation analysis is made to prove that this vibration control has obvious damping effects and then the influence of cable tension, support mass, natural frequency and spring stiffness on the damping are discussed. Eventually, the approximate analytic solution of the optimum damping parameter is obtained to provide a simple and effective reference and design method for the engineers.
通过D'Alembert原理建立拉索-弹性约束系统振动方程,通过Galerkin方法将偏微分方程转化为常微分方程,应用龙格-库塔积分法求解方程;经过仿真分析,验证了该振动控制具有明显的减振效果,并且讨论了初始拉力、支座质量、振动频率及弹簧刚度对减振效果的影响;最后给出了计算最优阻尼参数的近似解析式,为工程师提供了简便有效的参考依据及设计方法。
-
In the minimal coupling model of the electron and photon electromagnetic interaction,we have a precise calculation on the differential cross section of Compton scattering with electron renormalized chain propagator,and obtain the accurate result.
采用电子与光子电磁相互作用最小耦合模型,对电子重整化链图传播下Compton散射微分截面作了严格解析计算,获得精确理论结果;并将该计算结果与电子树图和重整化单圈图传播下Compton散射微分截面作对比分析,获得了有关辐射修正的重要信息。
-
The validity of staggered grid real value FFT differentiation operator is confirmed by comparing with the analytic Cagniard-De Hoop method in the half space SH problem.
将该方法和Cagniard De Hoop解析法在求解半无限空间地震波动的问题中进行比较,结果表明,新微分法的精度和解析方法的精度相同。
-
A comparison with the analytic result for vertical displacement in homogeneous medium demonstrates that the staggered-grid differentiation operator almost achieves as the same accuracy as the analytic method.
在均匀介质中,将错格伪谱微分算子计算的结果和解析解进行比较,结果表明本文算子几乎达到了解析解的精度。
-
The validity of staggered grid real value FFT differentiation operator is confir med by comparing with the analytic CagniardDe Hoop method in the half space SH problem.
将该方法和CagniardDe Hoop解析法在求解半无限空间地震波动的问题中进行比较,结果表明,新微分法的精度和解析方法的精度相同。
-
The solitary wave can be generated considering Goring and Raichlen's movement of a paddle. The proposed original linear solution for the solitary wave generation is expressed in the hypergeometric function. Two disadvantages of the original solution with large trailing wave and skewed wave profile are found by comparing with the theory of solitary wave derived from Boussinesq's equation.
本文并以弱非线性的孤立波造波问题做为解析之对象,由於孤立波造波板速度为一超越函数,造成解析上的困难;本文以 hypergeometric 函数推求常微分方程式之全解,并与理论波形解比较后,发现由於未考虑非线性及分散性过强等问题,使得线性暂态解较理论波形拉长与歪斜,可能无法有效描述孤立波造波问题,故针对线性之分散关系做出修正。
-
The solitary wave can be generated considering Goring and Raichlen's movement of a paddle. The proposed original linear solution for the solitary wave generation is expressed in the hypergeometric function. Two disadvantages of the original solution with large trailing wave and skewed wave profile are found by comparing with the theory of solitary wave derived from Boussinesq's equation. The difference between the original linear solution and the solitary wave theory results from the nonlinearity and dispersion of generated waves in the flume.
本文并以弱非线性的孤立波造波问题做为解析之对象,由於孤立波造波板速度为一超越函数,造成解析上的困难;本文以 hypergeometric 函数推求常微分方程式之全解,并与理论波形解比较后,发现由於未考虑非线性及分散性过强等问题,使得线性暂态解较理论波形拉长与歪斜,可能无法有效描述孤立波造波问题,故针对线性之分散关系做出修正。
- 推荐网络例句
-
Do you know, i need you to come back
你知道吗,我需要你回来
-
Yang yinshu、Wang xiangsheng、Li decang,The first discovery of haemaphysalis conicinna.
1〕 杨银书,王祥生,李德昌。安徽省首次发现嗜群血蜱。
-
Chapter Three: Type classification of DE structure in Sino-Tibetan languages.
第三章汉藏语&的&字结构的类型划分。