解析函数
- 与 解析函数 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The content of this course is: analytic function (the definition of analytic function, elementary functions, etc.), conformal mapping (the definition if conformal mapping, fractional linear functions, elementary mappings, etc.), complex integration (Cauchy's integral formula, Cauchy's theorem, etc.), Series (Laurent Series, singularities, local property, etc.), residues and its applications (the Residues Theorem, integration by residues, the Argument Principle, the Maximum Principle, Schwarz's Lemma, etc.), analytic continuation and harmonic functions, etc.
本课程内容主要包括:解析函数(解析函数的定义、初等函数等)、共形映射(共形映射的定义、分式线性变换及初等映射等)、复积分(Cauchy 积分公式、 Cauchy 定理等)、级数(Laurent 级数、孤立奇点、局部映射等)、留数及其应用(留数定理、利用留数计算积分、幅角原理、最大模原理、 Schwarz 引理等)、解析开拓和调和函数等内容。
-
In this paper, by using Cauchy-Riemanne condition of analytic function, a simple solving process of analytic function with a harmonic function as its real pan or pure part is presented.
文章利用解析函数的Cauchy-Riemanne条件,给出了调和函数作为解析函数的实部或虚部时解析函数的一种简单求法。
-
For the Riemann boundary value problems for the first order elliptic systems , we translates them to equivalent singular integral equations and proves the existence of the solution to the discussed problems under some assumptions by means of generalized analytic function theory , singular integral equation theory , contract principle or generaliezed contract principle ; For the Riemann-Hilbert boundary value problems for the first order elliptic systems , we proves the problems solvable under some assumptions by means of generalized analytic function theory , Cauchy integral formula , function theoretic approaches and fixed point theorem ; the boundary element method for the Riemann-Hilbert boundary value problems for the generalized analytic function , we obtains the boundary integral equations by means of the generalized Cauchy integral formula of the generalized analytic function , introducing Cauchy principal value integration , dispersing the boundary of the area , and we obtains the solution to the problems using the boundary conditions .
对于一阶椭圆型方程组的Riemann边值问题,是通过把它们转化为与原问题等价的奇异积分方程,利用广义解析函数理论、奇异积分方程理论、压缩原理或广义压缩原理,证明在某些假设条件下所讨论问题的解的存在性;对于一阶椭圆型方程组的Riemann-Hilbert边值问题,利用广义解析函数理论、Cauchy积分公式、函数论方法和不动点原理,证明在某些假设条件下所讨论问题的可解性;广义解析函数的Riemann-Hilbert边值问题的边界元方法是利用广义解析函数的广义Cauchy积分公式,引入Cauchy主值积分,通过对区域边界的离散化,得到边界积分方程,再利用边界条件得到问题的解。
-
By combining the theory of sectionally holomorphic function, the analytical extending method, Cauchy model integral, the analysis of the singularity of complex functions and Riemann boundary problem, analytic relations between the complex potentials were obtained.
研究压电材料在均匀热流作用下螺型位错与圆弧裂纹的相互作用,综合运用复变函数分区全纯理论、解析函数奇性主部分析方法、解析延拓原理、Cauchy型积分以及Riemann边值问题求解方法,获得各复势函数之间的解析关系,进一步得到了特殊情况下所讨论问题的封闭解,并求解出像力随温度梯度和位错位置变化的表达式。
-
By combining the theory of sectionally holomorphic function,the analytical extending method,Cauchy model integral,the analysis of the singularity of complex functions and Riemann boundary problem,analytic relations between the complex potentials were obtained.
综合运用复变函数分区全纯理论、解析函数奇性主部分析方法、解析延拓原理、Cauchy型积分以及Riemann边值问题求解方法,获得各复势函数之间的解析关系,进一步得到了特殊情况下所讨论问题的封闭解,并求解出像力随温度梯度和位错位置变化的表达式。
-
By combining the theory of sectionally holomorphic function, the analytical extending method, Cauchy model integral, the analysis of the singularity of complex functions and the method for Riemann boundary problem, analytic relations between the complex potentials are obtained.
综合运用复变函数分区全纯理论、解析函数奇性主部分析方法、解析延拓原理、Cauchy型积分以及Riemann边值问题求解力法,导出各复势函数之间的解析关系,进一步得到特殊情况下所讨论问题的封闭解,并解出像力随温度梯度和位错位置变化的表达式。
-
In this paper, five equivalent conditions of the definition and five special nature of analytic function are given, and followed by their mutual equivalence of the proof , the relationship between the equivalent conditions and the nature of analytic functions is revealed, which can help us to learn the concept of complex variable function in deep depth and make analytic functions an important role in complex variable function.
本文依次给出了解析函数的五个等价条件及五个性质,并通过对它们相互等价性的证明,导出了解析函数等价条件与性质之间的关系,更加深入地揭示解析函数这一概念的内涵,展示出了解析函数在复变函数论学习中的重要性。
-
The main goal is to use some results and methods from classical analytic-function theory to determine some of the most basic questions you can ask about linear operators and functional space. At the same time using functional space theory and operator theory as a tool to study the classical questions in function theory.
解析复合算子的研究是解析函数论和算子理论结合的产物,其目的是利用经典解析函数论中的方法与结论探讨泛函空间与算子理论中的一些最基本的问题,同时也以泛函空间与算子理论为工具研究函数论中的经典问题。
-
Also, if a complex analytic function is defined in an open ball around a point x 0, its power series expansion at x 0 is convergent in the whole ball. This is not true in general for real analytic functions.
复解析函数则不同:凡复解析函数必为全纯函数(即复可导,以实变量表示则是满足柯西-黎曼方程),反之亦然,因此全纯函数与解析函数在复分析中是同一类对象。
-
The process of our study links some of the most basic questions about C〓 with beautiful classical results from analyticfunction theory. For instance, it is essential Littlewood subordination theorem that assures that composition operators act boundedly on many analytic function spaces. And there are close connections between the compactness of C〓 and the existence of angular derivatives of ψ at points of 〓D. It involves the classical Julia-Careatheodory theorem, Denjoy-Wolff theorem and Nevanlinna counting functions and so on. It makes many old theorems in analytic-function theory getting some new meanings, and bestows upon functional analysis an interesting class of linear operators. This thesis consists of six chapters as follows: Chapter 1 is a preparatory in nature.
从而建立了C〓的算子性质与解析函数论中许多漂亮的经典结果之间的联系,如许多解析函数空间上复合算子的有界性本质上往往是著名的Littlewood从属原理,复合算子的紧性与其诱导映射在边界〓D上的角导数之间有着紧密的联系等等,这样自然而然地涉及到经典函数论中的Julia-Caratheodory定理,Denjoy-Wolff定理及Nevanlinna计数函数等等一些结果,并以此赋予函数论中许多古老问题以新意,同时也为泛函分析提供了一类十分具体的线性算子。
- 推荐网络例句
-
Breath, muscle contraction of the buttocks; arch body, as far as possible to hold his head, right leg straight towards the ceiling (peg-leg knee in order to avoid muscle tension).
呼气,收缩臀部肌肉;拱起身体,尽量抬起头来,右腿伸直朝向天花板(膝微屈,以避免肌肉紧张)。
-
The cost of moving grain food products was unchanged from May, but year over year are up 8%.
粮食产品的运输费用与5月份相比没有变化,但却比去年同期高8%。
-
However, to get a true quote, you will need to provide detailed personal and financial information.
然而,要让一个真正的引用,你需要提供详细的个人和财务信息。