自同构
- 与 自同构 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
This paper defines j-dual automorphism and anti- automorphism of de Bruijn Good graph Gn over F2+vF2 ring.
文章定义了F2+vF2环上的de Bruijn Good图Gn的j对偶自同构及反自同构,并给出了在F2+vF2环上移位寄存器非奇异的充要条件,以及非奇异反馈函数与其自同构函数的表达式。
-
The automorphism group of the direct product of n finite groups is studied and its matrix expression is obtained.
研究了n个有限群直积的自同构群,得到了其矩阵描述,进而刻划了该直积群的交换自同构及中心自同构。
-
Lubotski [3] and Lue [2] showed that every normal automorphism of a non-cyclic free group is inner.
Lubotski[3]和Lue[2]证明了秩不小于2的自由群的每个正规自同构都是内自同构。
-
Automorphism group of a linear code is obtained with the help of the general linear group constructed by all invertible matrices, and it is illustrated by matrices generalized inverses.
给出了通过求解可逆矩阵构成的一般线性群,获得线性码的自同构群的方法,并利用矩阵广义逆理论,对线性码的自同构群进行进一步刻划。
-
Automorphism group of a linear code is obtained with the help of the general linear group constructed by all invertible matrices,and it is illustrated by matrices generalized inverses.
文 [1 ]给出了判断一个置换矩阵是否属于自同构群的充分必要条件,文 [4]在此基础上利用矩阵广义逆理论对自同构群进行研究得出了一些有用的结论。
-
Moreover, some subgroups of Aut are obtained, such asthe inner automorphism group, the central automorphism group, the involutional automorphism group, the first and the second extremal automorphism group.
证明了:当n=0时,Aut中每个元素都是内自同构,且Aut≌C(定理1.12)。n=1时,Aut中每个元素都是有限个内自同构,中心自同构,对合自同构和第一类外自同构的乘积(定理1.13)。
-
In this paper,some properties of automorphisms of classical Lie algebras was given first and then a classification of conjugacy automorphisms using only the matrix theory was presented.
首先给出了典型李代数自同构的一些性质,接着用矩阵的形式具体给出典型李代数自同构共轭的充要条件,并计算了任意阶自同构的不动点集。
-
If let H be a complex separable Hilbert space ,dimH ≥ 3, we prove that every approximately 2- local automorphism of P B_s(H,E is an automorphism. Every real linear approximately local automorphism of B_s is an automorphism.
另外本章还证明了对于可分的Hilbert空间H,当dimH≥3时,P,B_s和E的近似2—局部自同构是自同构,B_s的实线性近似局部自同构是自同构。
-
By using properties of scalar matrices over semirings,we generalize algebraic properties for the automorphisms of matrix algebras over commutative rings and obtain some algebraic properties for the automorphisms of matrix algebras over commutative semirings.
在这一章中,我们首先利用半环上常量矩阵的性质把环上矩阵代数的性质拓广到半环上,获得了交换半环上矩阵代数自同构的一些代数性质,接下来采用积和式的方法证明任意非负交换半环上n阶矩阵代数Tn的自同构的n次幂必为内自同构。
-
In chapter 1, we introduce the notions of the approximately 2-local automorphisms, the approximately local Hilbert space representations and the approximately 2- local Hilbert space representations;We prove that every surjective and multiplicative approximately local *-automorphisms of a C*- algebra with a unique faithful tracial state is *-automorphisms;surjective approximately 2- local *- automorphisms of C*-algebra with unique faithful tracial states are Jordan *- automorphisms;Surjective approximately 2- local *- automorphisms of a finit factor are *-automorphisms;Approximately 2- local *- automorphisms of M_n are *-automorphisms.
第一章定义了近似2—局部自同构,近似局部表示,近似2—局部表示;证明了有唯一忠实迹态的C~*-代数上的满可乘近似局部*—自同构是*—自同构,满近似2—局部*—自同构是Jordan *—自同构,有限因子上的满近似2—局部*—自同构是*—自同构,以及矩阵代数M_n上的近似2—局部*—自同构是*—自同构。
- 推荐网络例句
-
But we don't care about Battlegrounds.
但我们并不在乎沙场中的显露。
-
Ah! don't mention it, the butcher's shop is a horror.
啊!不用提了。提到肉,真是糟透了。
-
Tristan, I have nowhere to send this letter and no reason to believe you wish to receive it.
Tristan ,我不知道把这信寄到哪里,也不知道你是否想收到它。