自伴的
- 与 自伴的 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
We discuss the relation between elementary maps and ring isomorphisms, andwe give a characterization of elementary maps on stndard operator algebras on Banachspaces, JSL-algebras and nest algebras. For Jordan-triple elementeary maps, we provetheir additivity on a class of ring and show a relation of them with Jordan isomorphisms. Furthermore. we describe the Jordan elementary maps on standard operator algebrasand nest algebras. We also study the semi-Jordan elementary maps on effect algebrasand the space of self adjoint operators.
研究了算子代数上的初等映射和环同构的关系,完全刻画了Banach空间上标准算子代数,JSL代数和套代数上的初等映射;讨论了Jordan-triple初等映射的可加性以及它和Jordan同构的关系,进而完全刻画了Banach空间上标准算子代数和套代数上的Jordan-triple初等映射;刻画了效应代数和自伴算子空间上的semi-Jordan初等映射。
-
These problems include the selfadjointness of the coefficient matrix operator, the functional of the matrix operator equation, the equivalence between variational problem and boundary value problem of eddy-current fields, and the extreme value principle of the functional.
本文首先从求解时谐涡流场的〓-ψ法与〓-Ω法的矩阵算子方程出发,提出了时谐涡流场的统一矩阵算子方程,进而系统地讨论了该方程的系数矩阵算子的自伴性、矩阵算子方程的泛函、涡流场边值问题与对应变分问题的等价性以及泛函的极值原理。
-
In order to find a stable approximate solution of linear compact operator equation, the article introduces general theories about ill-posed problems, it bases on spectral theory of self-adjiont compact operators and the singular value decomposition for compact operators, avails singular system to give expression of the solution, and explains ill-posedness of compact operator equation roots in the property that the singular values trends to zero. Thereout, it is provided with theoretic support of building up regularization method by inducting regularization filter to weaken or filtrate the influence that the nature of the singular value being very close to zero has on the solutions stability.
为了得到线性紧算子方程稳定的近似解,介绍了不适定问题正则化的一般理论,以自伴紧算子的谱分析与紧算子奇异值分解为理论基础,利用奇异系给出了解的表达式,说明了紧算子方程不适定性的根源在于紧算子的奇异值趋于零的性质,由此通过引入正则化滤子函数来减弱或滤掉奇异值趋于零的性质对解的稳定性的影响,构造正则算子,从而提供了建立正则化方法的理论依据。
-
We have obtained the following main significant results:(1) A master constraint operator for LQG is constructed, which is shown to be self-adjoint in the diffeomorphism invariant Hilbert space. Thus it lays a foundation for the master contraint programme in LQG;(2) The Immirzi parameter ambiguity in LQG is fixed by introducing supersymmetry, which leads to the conclusion that in the case where matter fields are coupled LQG might prefer supersymmetry in low energy;(3) The current accelerating expansion of our universe is successfully explained in the context of 5-dimensional Brans-Dicke theory, which gives a natural strategy to solve the dark energy problem.
重要成果包括:(1)构造出圈量子引力的Master约束算符,并证明了其自伴性,从而为应用Master约束方法解决量子动力学的难题奠定了基础;(2)通过引入超对称合理地固定了Immirzi参数,得出了在与物质场耦合的低能情况下圈量子引力可能偏爱超对称的结论;(3)用五维Brans-Dicke理论成功地解释了当今宇宙的加速膨胀,从而给出了一个自然解决暗能量问题的方案。
-
The research of this thesis focuses on the infimum and supremun of self-adjoint operators in a complex Hilbert space with respect to the Gudder order, the infimum and supremun of operators in a complex Hilbert space with respect to the *-order and theΓ-inverse of operators in a complex Hilbert space.
本文研究内容涉及Hilbert空间上自伴算子关于Gudder序的上确界和下确界,Hilbert空间上算子关于~*-序的上确界和下确界以及Hilbert空间上算子的Γ-广义逆这三个方面的内容。
-
In the first part of this paper, we give some basic concepts of regular Sturm-Liouville problems and some Sturm-Liouville problems with eigenparameter in the boundary conditions and the definition and properties of the Krein space. Using the Krein space, we describe a class of Sturm-Liouville problems with eigenparameter in two boundary conditions and prove that it can generate a self-adjoint operator in Krein space with only point spectrum.
第一部分我们介绍了一些基本概念如正则Sturm-Liouville问题、边界条件含参数的问题、Krein空间等,并利用Krein空间的定义和性质描述了一类参数边界条件的Sturm-Liouville问题,证明它可构造一Krein空间上的自伴算子,并且谱全为点谱。
-
Using two new methods, this paper prores one pertubation theorem on the finite Hilbert space of 2×2 operator matrices, and gereralizes this theorem to the infinite Hilbert space of selfadjoint operators.
给出了有限维Hilbert空间中2×2算子矩阵的数值域扰动定理的两种证明方法,并且将该定理推广到无限维Hilbert空间上的自伴算子。
-
We present necessary and sufficient conditions for which there exists A∨_G B and in this case we establish the explicit representation of A∧_G B, where A∨_G B denotes the supremum of A and B associated with the Gudder order.
对任意给定的自伴算子A和B,我们证明了存在A和B关于Gudder序的下(来源:ABC3c论文网www.abclunwen.com)确界A∧_G B并且我们具体地给出了A∧_G B。
-
We obtain a completecharacterization of each bound restricting self-adjoint extension by specifying theboundary conditions of L.
我们通过具体化L的边值条件,给出了Sturm-Liouville算子的任一限界自伴扩张的完备解析刻画。
-
The self-adjoint boundary-value problems and spectral theory of differential operators are important and fundamental problems in the operator theory.
微分算子自伴边值问题及谱理论是算子理论的重要而基本问题,它是同微分方程、数学物理和量子力学的某些重要问题相联系而发展起来的。
- 推荐网络例句
-
With Death guitarist Schuldiner adopting vocal duties, the band made a major impact on the scene.
随着死亡的吉他手Schuldiner接受主唱的职务,乐队在现实中树立了重要的影响。
-
But he could still end up breakfasting on Swiss-government issue muesli because all six are accused of nicking around 45 million pounds they should have paid to FIFA.
不过他最后仍有可能沦为瑞士政府&议事餐桌&上的一道早餐,因为这所有六个人都被指控把本应支付给国际足联的大约4500万英镑骗了个精光。
-
Closes the eye, the deep breathing, all no longer are the dreams as if......
关闭眼睛,深呼吸,一切不再是梦想,犹如。。。。。。