线性代数
- 与 线性代数 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
cryptography ; algebraic attack ; Boolean function ; algebraic immune degree
本文研究了具有1型线性结构的布尔函数f的代数免疫阶,揭示了布尔函数的线性结构对其代数免
-
Ringel realized positive parts of semisimple Lie algebras in the framework of Ringel-Hall algebras. The main result of this thesis is to build a geometric and topological model over triangulated categories such as derived categories and stable module categories of repetitive algebras. We defines a Lie bracket by Euler characteristics of constructible subsets and thus realizes infinite dimensional Lie algebras of various types with non-degenerated bilinear form.
本文的主要结果是在导出范畴和重复代数的稳定模范畴等三角范畴水平上建立相应的几何-拓扑模型,并利用相应可构集的欧拉示性数定义了一个Hall代数的交换子乘法,从而在三角范畴水平上实现了一大类无限维李代数的整体构造,并且这类李代数本质上都具有非退化的不变双线性型。
-
We first show some properties of such operators and give an explit description about the image of a linear bounded operator on a linear normed space. Then based on these results, we show the mean ergordic theorem on a C*-bial-gebra and get a sufficient and necessary condition for a linear functional to be Haar measure. Finally we discuss the sufficent conditions for the existence of Haar measure on C*-bialgebras.
本文首先通过考察这样算子的性质和刻画赋范线性空间中连续线性算子的像集的性质,证明了C*-双代数中的一个平均遮历定理,得到了C*-双代数中的线性泛函是 Haar 测度的充分必要条件;利用遍历定理和这个充分必要条件探讨了C*-双代数中 Haar 浏度存在的一些充分条件。
-
Let R be an arbitrary commutative ring with identity, gl the general linear lie algebra over R consisting of all n × n matricesover R and with the bracket operation = xy -yx, t the lie subalgebraof gl consisting of all n×n upper triangular (resp., strictly upper triangular ) matrices over R and d the lie subalgebra of gl consisting of all n×n diagonal matrices over R.
在第三章中,对R是交换环的情形,讨论了典型李代数的导子代数的结构问题:设R是一个含幺交换环,gl是R上一般线性李代数。t是gl的所有n阶上三角矩阵(相应地,严格上三角矩阵)构成的子代数,d是gl的所有n阶对角阵构成的李代数。
-
Libermann.The early researcheson this kind of manifolds were closely related to Physics and Mechanics.But since1991,S.Kaneyuki published his result on the algebraic condition for the existence ofinvariant〓structures on a coset space,Lie theory has played the most impor-tant role in the study of this kind of manifolds.In particular,dipolarizations in a Liealgebra are closely related to the homogeneous〓manifolds.Dipolarizationsin semisimple Lie algebras and the homogeneous〓manifolds associated withthese dipolarizations have been studied by S.Kaneyuki,Z.X.Hou and S.Q.Deng.Inthe partⅡ of this thesis we study the dipolarizations in some quadratic Lie algebrasand the homogeneous parakahler manifolds associated with these dipolarizations.
Libermann给出的,早期的有关类流形的研究与物理和力学密切相关,自从1991年金行壮二发表了陪集空间上存在不变仿凯勒结构的代数化结果后,李群及李代数理论在这类流形的研究中起着主要作用,特别地,李代数的双极化与这类流形密切相关,半单李代数的双极化的相关几何,金行壮二,候自新和邓少强等人已作了研究,二次李代数是比半单李代数更广且带有非退化不变双线性型的李代数,本文主要研究了二次代数的双极化及相关几何。
-
Symmetry group is semisimple, the system has a fine cascade decomposition that is a qasi-parallel decomposition, which is corresponding to the decomposition of linear systems under the semisimple symmetry algebra.
由于对称代数对线性系统的结构有重要作用,特别是当该代数半单时,系统可分解为多个独立的子系统,因此如何就给定的线性控制系统构造出其对称代数具有重要意义。
-
By utilizing the concepts and methods developed in Algebra Topology,Algebra Geometry and Algebra Representations,we first depicted the concepts and results of Incidence Algebra which reflects the linear structure of underlying posets and Sheaf theory which reflects the topological structure of underlying poset in the framework of Category Theory.
本文综合运用了代数拓扑、代数几何及代数表示论里发展起来的概念与方法,首先在范畴的框架下,对和偏序集的线性结构密切相关的Incidence代数,及与偏序集的拓扑结构紧密联系的层,进行了刻画。
-
In section 2,we characterize the minimal ideals of finite dimensional symmetricself-dual Lie algebras over the complex field and gives an optimistic lower bound for thedimension of the space of invariant symmetric bilinear forms on a symmetric self-dualLie algebra by means of the number of linearly independent minimal ideals.
在第二节中,我们完全刻划了有限维对称自对偶李代数的极小理想;用线性无关极小理想的个数给出了一个对称自对偶李代数上由不变对称双线性型构成的线性空间维数的最好下界
-
We introduce some concepts, such as yon Neumann algebras, factor von Neumann algebras, nest algebras and so on, and give some well-known theorems that we will use in this paper. In Chapter 2, we put our attention on linear maps that preserving zero Jordan triple product on nest subalgebrasof factor yon Neumann algebras.
第二章首先对因子von Neumann代数中套子代数上保Jordan三重零积的线性映射进行了研究,证明了从因子von Neumann代数中套子代数到任一有单位元的Banach代数的保Jordan三重零积的单位线性双射是Jordan同构。
-
Part II of this paper studies the structure of symmetric self-dual Lie algebras.
假设李代数g带有一个与Killing具有相同性质的型B,即具有双线性性,非退化性,对称性和不变性,由于这样的李代数g的伴随表示与它的余伴随表示等价,我们称李代数g为对称自对偶李代数,称型B为它上的一个不变数积。
- 推荐网络例句
-
On the other hand, the more important thing is because the urban housing is a kind of heterogeneity products.
另一方面,更重要的是由于城市住房是一种异质性产品。
-
Climate histogram is the fall that collects place measure calm value, cent serves as cross axle for a few equal interval, the area that the frequency that the value appears according to place is accumulated and becomes will be determined inside each interval, discharge the graph that rise with post, also be called histogram.
气候直方图是将所收集的降水量测定值,分为几个相等的区间作为横轴,并将各区间内所测定值依所出现的次数累积而成的面积,用柱子排起来的图形,也叫做柱状图。
-
You rap, you know we are not so good at rapping, huh?
你唱吧,你也知道我们并不那么擅长说唱,对吧?