级数的
- 与 级数的 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
For some special cases, the paper gives some important identical theorems, and then establishes a valuable relation between the uniformly almost periodic functions and the trigonometric polynomials.Secondly, on the basis of the identical theorem, the paper investigates the Fourier series of the uniformly B2 almost periodic functions, and further proves that the series is unique.Thirdly, the paper discusses the Parseval equation of the uniformly B2 almost periodic functions, which establishes the relation between these functions and the coefficients of their Fourier series; and next investigates an important approximation theorem-Riesc-Fischer theorem, about the uniformly B2 almost periodic functions and the trigonometric polynomials.
并给出了特殊情况下的几个重要的恒同定理,将一致概周期函数与有限三角多项式联系起来;第二,在恒同定理的基础上,给出了一致B~2概周期函数的Fourier级数,并且级数是唯一的;第三,讨论了一致B~2概周期函数的Parseval方程,建立了函数与其Fourier级数的系数之间的联系;接着给出了关于一致B~2概周期函数和三角多项式之间的一个重要近似定理—Riesc-Fischer定理。
-
Power series, radius of convergence; function that can be expanded in a power series on an interval.
幂级数;收敛半径;可展开为幂级数的函数。
-
For the compact operators series and Eberlein-Smulian theorem,first,it presents acharacterization of unconditional convergent series for the case of sequentially complete lo-cally convex spaces.
关于紧算子级数与〓定理,首先给出了序列完备局部凸空间中无条件收敛级数的一个特征。
-
The main results areas follows: On the invariants of λ-multiplier convergent series, first, it proves that ifλ- has the signed weak gliding hump property, the λ-multiplier convergentseries has the dual invariant.
获得了如下研究成果:在〓数乘收敛级数的不变性方面,首先证明了若〓具有弱滑脊性,那么〓数乘收敛级数具有对偶不变性。
-
It investigates mainly the dualinvariant of λ- multiplier convergent series, the full invariant ofλ-multiplier convergent series, the λ- multiplier convergent series in spaceswith a basis, the compact sets in the infinite matrix topological algebras, thecharacteristics of have the same compact sets in different topologies,the weak sequentially completeness of , the characteristics ofSchur-matrices, the characteristics of p- uniform Toeplitz matrices and theEberlein-Smulian theorem in the locally convex spaces, etc.
主要研究了〓数乘收敛级数的对偶不变性,〓数乘收敛级数的全程不变性,有基空间中的〓数乘收敛级数,无穷矩阵拓扑代数〓中的紧集,〓在不同拓扑下具有相同紧集的刻划,〓的弱序列完备性,Schur—矩阵的刻划,p-一致Toeplitz矩阵的刻划以及局部凸空间上的Eberlein—Smulian定理等。
-
Content: In this paper, we investgated the type of two kinds of random Dirichlet series and the order and the type of two kinds of B-valued random Dirichlet series by use the methods of complex analysis, probability and random series.
本文运用复分析、概率论及随机级数的知识与研究方法,研究了两类随机Dirichlet级数的型和两类B-值随机Dirichlet级数的级和型,全文共分三个部分:第一章:简单介绍本研究方向的发展历史,研究现状以及一些必要的预备知识及其记号。
-
In Chapter two, a pioneers growth condition is weakened about analytic Dirichlet series, and an equivalent condition about regular growth in the whole plane is obtained.
第二章减弱了前人提出的关于解析Dirichlet级数的增长性的条件,给出了整Dirichlet级数的正规增长性的等价条件,同时还讨论了有限ρ级Dirichlet级数准确级的增长性和正规增长性,得到了更好的结果。
-
As analysis becoming more and more rigorous, the theory of infinite series has come into being, which promote the development of mathematics largely.With the development of infinite series as the center, with the variation of thought after t...
本文以无穷级数的发展为中心,以无穷进入数学前后思想变化为线索,系统分析了级数理论形成的历史背景,通过对主要人物工作的总结,概括了级数理论的建立及其发展的过程。
-
Fri particular, the Wittmann-type strong law of larg numbers for independent random variables is generalized to the case of NA random variables. We also present the sufficient and necessary condition of the laws of logarithm, and we extend Teicher-type strong law of the large numbers for sequence of NA random variables. Some of the laws of iterated logarithm of Teicher-type, Egorov-type arid Wittmann-type for sequence of NA random variables are obtained. Then we investigate the rate3f ionvergcll( fbr series of NA randonl variables, we obtain soIne results fbr tl1e Iaws of theiterated logarithttl, the laws of logarithm and decreasing order fOr the tail sum.Risk itllttlysis tlleory is a sigIlifica11t part of insurance InatheInatics.
Wittmann(1985a)关于实独立随机变量列的结果,并给出了NA列强大数律成立的若干条件,特别建立了一般NA列对数律成立的充分必要条件,在二阶矩存在的条件下完整的解决了一般NA列对数律的问题,中文摘要2而已有的一些NA列对数律的结果可以由它推出,给出了NA列的Teiclier型强大数律,表明lbiChCI·(1979)给出的实独立随机变量列的强大数律可以减弱其条件等;建立厂不问分布NA列的Teicfl仪;Egorov,Petrov型有界重对数律,以及加权同分布NA列的有界重对数律,进一步推广了NA列的Kolmogory有界重对数律等,特别对NA列建立了Wittm洲型有界重对数律,而其证明方法与独立情形有很大不同,同时通过反例表明在与独立场合类似的条件下,独立列的Wittmann有界重对数律不能完美的推广到NA歹小惰形;最后研究了NA随机变量级数的收敛速度,给出了尾和下降的阶;尾和的有界重对数律,及尾和对数律成立的充要条件等,并通过反例说明 NA随机变量级数与独立随机变量级数在收敛速度方面存在的差异。
-
According to the definition of matrix power series and the convergence property of the power series, using the type compare method, the thesis got and verified part convergence properties of the matrix power series.
摘要根据矩阵幂级数的定义和数学分析中幂级数的收敛性质,运用类比的推理法,得到并验证了矩阵幂级数的部分相应的收敛性质。
- 推荐网络例句
-
On the other hand, the more important thing is because the urban housing is a kind of heterogeneity products.
另一方面,更重要的是由于城市住房是一种异质性产品。
-
Climate histogram is the fall that collects place measure calm value, cent serves as cross axle for a few equal interval, the area that the frequency that the value appears according to place is accumulated and becomes will be determined inside each interval, discharge the graph that rise with post, also be called histogram.
气候直方图是将所收集的降水量测定值,分为几个相等的区间作为横轴,并将各区间内所测定值依所出现的次数累积而成的面积,用柱子排起来的图形,也叫做柱状图。
-
You rap, you know we are not so good at rapping, huh?
你唱吧,你也知道我们并不那么擅长说唱,对吧?