素对偶理想
- 与 素对偶理想 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Next, we discuss the relations between left quasi-dual bimodules and left dual-bimodules, we obtain that a left quasi-dual bimodule is a left dual bimodule if it satisfies one of the following conditions: sM is minimal injective and MR is a M-minimal injective kasch-module; MR is a M-minimal injective kasch-module and for any two ideals LI and L2 ofSS rM(L1 n L2)-rw(L1)+rM(I2); sM is minimal injective and for any two submodules A and B of MR,Lastly, we applicate the quasi-duality on smash product algebra R#H, and obtain an answer of the semiprime problem, i.e., let H be a finite-dimensional semisimple Hopf algebra and R be an H-module algebra, if R is left quasi-dual and semiprime, then R#H is semiprime.
我们得到:一个左拟对偶双边模如果满足下列条件之一,则它将成为一个左对偶双边模:_sM是单内射的并且M_R是一个M-单内射kasch-模;M_R是一个M-单内射kasch-模并且对_sS的任意两个理想,有r_M(L_1∩L_2)=r_M(L_1)+r_M(L_2);_sM是单内射的且对M_R的任意两个子模,有l_s=l_s+l_s。2 在第2.3节中我们将拟对偶性应用于smash积代数R#H,部分解决了半素问题。
-
A special kind of prime dual ideals are defined in a lattice implication algebra, then their structures and properties are discussed. It is proved that the implication operation on this lattice implication algebra is determined by these prime dual ideals, and all of these prime dual ideals compose a lattice implication algebra which is lattice implication isomorphic to the former lattice implication algebra.
在格蕴涵代数中定义了一类特殊的素对偶理想,讨论了它们的结构和性质,证明了该格蕴涵代数中的蕴涵运算可以由这些特殊的素对偶理想所确定,并且这些特殊的素对偶理想全体自然地构成一个格蕴涵代数,它和原格蕴涵代数具有格蕴涵代数同构关系。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。