英语人>网络例句>算法 相关的搜索结果
网络例句

算法

与 算法 相关的网络例句 [注:此内容来源于网络,仅供参考]

In view of the principle of pointbypoint comparison method, the foundation deciding whether the middle point interpolation is the control step error of NC system has been advanced, the math mould of inserting and compensation method established and the function that judges error by interpolating method has been improved.

基于逐点比较法原理,提出中点插补算法作为数控系统控制步进的偏差判别依据,建立了插补算法的数学模型,对插补算法偏差判别函数进行了改进和完善。实例分析结果表明,中点插补算法使插补精度由原来的小于等于一个脉冲当量提高到小于等于 0 。5个脉冲当量,插补点大幅度地下降,系统的响应速度加快和插补精度提高

The PBIL algorithm is a combination of genetic algorithms and competitive learning, which maintains a probability vector about the search space and uses it to direct algorithm's exploration.

PBIL进化算法有效结合了简单遗传算法和竞争学习算法的特点,通过一个不断更新的且与搜索空间有关的概率矢量来指导算法的搜索,该概率矢量是整个进化过程的信息积累,用它指导产生的后代将会更加优秀。

The projection gradient method will be a possible way to solve the problem that we just get. It has been shown that the projections of the every directions, of which is the boundary point in linear restraint problems, are the possible decent directions, and the projection of negative grads direction is a decent direction. In 1960, Rosen proposed the basic idea of projection gradient methods, and then lots of researchers have been tried to find the convergence of this method. But most of them get the convergence with the condition to amend the convergence itself.

在约束最优化问题的算法中怎样寻找有效的下降方向是构造算法的重要内容,在寻找下降方向方面可行方向法中的投影梯度法有效的解决了下降方向的寻找问题,利用线性约束问题边界点的任意方向在边界上的投影都是可行方向,而负梯度方向的投影就是一个下降方向。60年代初Rosen提出投影梯度法的基本思想,自从Rosen提出该方法以后,对它的收敛性问题不少人进行了研究,但一般都是对算法作出某些修正后才能证明其收敛的,直到最近对Rosen算法本身的收敛性的证明才予以解决。

A proportional fairness resource allocation algorithm, including both subcarrier assignment and power allocation, is proposed in multicast orthogonal frequency division multiplexing systems.

提出了一种多播正交频分复用系统中的比例公平资源分配算法,该算法包括:子载波分配算法和功率分配算法

We study the properties of BR0-algebra and the total complication triple I method on complete BR0-algebra, and we apply the results to R0-Unite interval W. Not only we have simplified the proof of the results of R0-type triple I method on R0-Unite interval W, but also we make the proof to combine with the formal deductive system for fuzzy propositional calculus. This work also explains that the R0-type triple I method is a matching fuzzy inference with B?

研究了基础BR0-代数的性质和基于完备基础BR0-代数的全蕴涵三I算法,对—般蕴涵算子给出了三I算法解存在的—个充分条件,并将结果应用于R0-单位区间W,不但极大的简化了R0-单位区间W的R0-型α-三I算法结果的证明,而且使其证明过程与相应的模糊命题演算系统结合起来,说明了R0-型三I算法是与B?

This paper introduces a rapid genetic algorithm, which improves standard genetic algorithm through raising the computation to more efficient. RAGA has better practicability in velocity inversion.

这里介绍一种加速遗传算法,该算法通过提高计算效率改善了标准遗传算法,加速遗传算法在速度反演应用中具有更高的实用价值。

The results of two inversion algorithms indicate that RAGA is superior to SGA. RAGA inversion is an applicable method for both of simple and complex velocity model.

二种算法的反演计算结果说明,加速遗传算法性能优于标准遗传算法,无论针对简单速度模型还是复杂速度模型,加速遗传算法都是适用的。

The superlinear convergence property of the algorithm is proved in this paper, and compared with the Tensor algorithm. It is proved that this method is more efficient for solving unconstrained optimization whose object function is of rank one defect.

文中证明了该算法是一个具有超线性收敛的算法,并且把修正的BFGS算法同Tensor方法进行了数值比较,证明了该算法对求解秩亏一的无约束优化问题更有效。

The simulation results show that this algorithm has better global convergence ability and more rapid convergence,and it is superior to Genetic Algorithm,Particle Swarm Optimization algorithm and QPSO algorithm.

仿真实例表明,该算法具有良好的全局收敛性能和快捷的收敛速度,调度效果优于遗传算法、粒子群优化算法和量子粒子群优化算法

First,the rational optimal objective function for acoustic field pattern is put forward. Then, two optimal algorithms for global optimization are proposed.

在对空间声场提出合理的优化目标函数后,提出了两种优化算法进行全局寻优:一种是遗传算法构造的声场模式控制算法;另一种是特征向量算法

第32/100页 首页 < ... 28 29 30 31 32 33 34 35 36 ... > 尾页
推荐网络例句

But we don't care about Battlegrounds.

但我们并不在乎沙场中的显露。

Ah! don't mention it, the butcher's shop is a horror.

啊!不用提了。提到肉,真是糟透了。

Tristan, I have nowhere to send this letter and no reason to believe you wish to receive it.

Tristan ,我不知道把这信寄到哪里,也不知道你是否想收到它。