算子方程
- 与 算子方程 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The introduction of displacement operator, derivation operator, integral operator and the operator, such as differential calculus operator and the definition of the form of computing, will be applied to similar derivation formula gives Newton a Kete Si formula and Bernstein theorem Law said the operator, and form is derived; linear differential equations is the operator solution.
有没有高手可以帮我翻译下这段话啊???引入位移算子、求导算子、积分算子和差分算子等微积分算子的定义及其形式运算,将其应用于近似求导公式;给出牛顿一柯特斯公式和伯恩斯坦定理的算子法表示,并进行形式推导;给出线性常微分方程的算子解法。
-
Further, with the help of Riccati equations, an infinite number of conservation laws for the solton hierarchy are deduced. For the sake of simplicity, taking the general TD hierarchy as an illustrative example, we prove that its 2×2 Lenard pair of operators forms a Hamiltonian pair. Thus the isospectral evolution TD hierarchy is the general Hamiltonian system and possesses the Bi-Hamiltonian structures and Multi-Hamiltonian structures. By using the method of derivation of functional under some constraint condition, a complete one-to-one correspondence between the Hamiltonian functions of the hierarchy and its conservation density functions can be built. These results can also be applied to the isospectral evolution soliton hierarchy of this paper. Finally, there's a gauge transformation between the spectral problem of this paper and the AKNS system. Moreover, the potentials in these spectral problems satisfy the general Miura transformation, the corresponding relationship between the two soliton hierarchies is also given.
进一步本文还通过特征函数的组合关系所满足的Riccati方程,得到了该等谱方程族的无穷多个守恒律;为简便起见,本文以广义TD族为例,由它的2×2 Lenard算子对的性质证明了此算子对为Hamilton算子对,这说明广义TD族是广义Hamilton系统且具有Bi-Hamilton结构和Multi-Hamilton结构;进而利用它的依赖于谱参数的一般守恒密度的积分在约束条件下求泛函导数的方法,得到了广义TD族的Hamilton函数与守恒密度之间的对应关系,这些性质对于由本文提出的2×2谱问题所导出的等谱孤子族仍成立;另外此谱问题与AKNS系统存在着规范变换,位势之间有广义Miura变换,而孤子方程之间也满足一定的等价关系。
-
Firstly,by using the estimating methodfor the compact embedding operators(from weighted Sobolev space to the weighted〓space),we obtain a necessary and sufficient condition for the discreteness of thespectrum of certain differential operators.Secondly,based on the property of thespectrum of difinitizable operators on the Krein space,we consider the left definitedifferential equations with middle deficiency indices,and give a completecharacterization for self-adjoint(J-self-adjoint)differential operators in theindefinite inner product space 〓.Especially,we prove that all the J-self-adjoint differential operators are definitizable.
我们首先运用加权Sobolev空间到加权〓空间嵌入算子紧性的判别方法,证明一类加权自伴微分算子具有离散谱的充要条件;然后,基于Krein空间上可定化算子谱的性质,对于具中间亏指数的左定型微分方程,建立其相应的微分算式在不定度规空间〓上所生成自伴算子的完备性刻画(特别证明了J-自伴微分算子具有可定化性)。
-
In Chapter 7, we prove the resolvent operator of compound KDV equation is computable via the operator method, contraction mapping principle and TTE theory.
第五章应用Backlund变换得到了变系数组合KdV-Burgers方程的N-类孤子解;第六章应用F展开法及其扩展形式得到了变系数组合KdV方程和(n+1)维Sine-Gordon方程的孤立波解;第七章运用算子方法、压缩映象原理和TTE理论,证明了组合KdV方程的解算子是可计算的;最后对全文进行了总结,并对未来的研究方向作了展望。
-
In which the second order degenerate equations associated with square sum operators of Hormander vector fields are the most important classes. People are used to calling them subelliptic operators because they have properties similar to that of classical Laplacian.
由于该算子具有与经典Laplace算子类似的次椭圆性质,人们习惯上把由向量场构成的二阶线性及非线性算子通称为次椭圆算子,相应的方程称为次椭圆方程。
-
There arise many techniques in the study of existence of solution for operator equations,such as topological transversality method,upper and lower solutions method,monotone iterative method, and variation method,and bountiful results are obtained.
在算子方程解的存在性研究中产生了许多方法,如拓扑度方法、上下解方法、单调迭代法、变分方法等,获得了丰富的结果。
-
In this project, we study the theory of higher order differential equations in Banach spaces and related topics. We solve an open problem put forward by two American Mathematicians and two Italian Mathematicians concerning wave equations with generalized Weztzell boundary conditions, introduce an existence family of operators from a Banach space $Y$ to $X$ for the Cauchy problem for higher order differential equations in a Banach space $X$, establish a sufficient and necessary condition ensuring $ACP_n$ possesses an exponentially bounded existence family, as well as some basic results in a quite general setting about the existence and continuous dependence on initial data of the solutions of $ACP_n$ and $IACP_n$. We set up quite a few multiplicative and additive perturbation theorems for existence families governing a wide class of higher order differential equations, regularized cosine operator families, regularized semigroups, and solution operators of Volterra integral equations, obtain classical and strict solutions having optimal regularity for the inhomogeneous nonautonomous heat equations with generalized Wentzell boundary conditions, gain novel existence and uniqueness theorems,which extend essentially the existing results, for mild and classical solutions of nonlocal Cauchy problems for semilinear evolution equations, present a new theorem with regard to the boundary feedback stabilization of a hybrid system composed of a viscoelastic thin plate with one part of its edge clamped and the rest-free part attached to a visocelastic rigid body. Also we obtain many other research results.
在本研究中,我们对Banach空间中的高阶算子微分方程的理论以及相关理论进行了深入研究,解决了由美国和意大利的四位数学家联合提出的一个关于广义Wentzell边界条件下的波动方程适定性的公开问题,恰当地定义了Banach空间中的高阶算子微分方程Cauchy问题的算子存在族及唯一族,建立了齐次和非齐次高阶算子微分方程Cauchy问题适定性的判别定理,获得了关于高阶退化算子微分方程的算子存在族、正则余弦算子族、正则算子半群、Volterra积分方程解算子族的乘积扰动和混合扰动定理,得到了关于以依赖于时间的二阶微分算子为系数的一大类非自治热方程非齐次情形下的时变广义Wentzell动力边值问题的古典解、严格解的最大正则性结果,获得了半线性发展方程非局部Cauchy问题广义解和经典解存在唯一的判别条件,从实质上推广了现有的相关结果;得到了一部分边缘固定而另一部分附在一粘弹性刚体上的薄板构成的混合粘弹性系统的边界反馈稳定化的新稳定化定理,还建立了一系列其他研究结果。
-
This one-way wave equation fits eikonal equation and transport equation corresponding to full acoustic wave equation in travel-time and first order amplitude. According to the perturbation theory often used in inverse solution, we split the velocity field into intraformational constant velocity background and variable velocity disturbance. Then we calculate time-shift quantity of migration and amplitude correction coefficients for wavefield depth continuation in total uniform formation and each formation.
基于反问题求解中常用的摄动理论,把速度场分裂为层内常速背景和变速扰动,求得整个均匀层波场深度延拓的偏移时移量及振幅校正系数、各层的偏移时移量及振幅校正系数,从而得到一个基于傅里叶有限差分法的双域保幅叠前深度偏移算子方程。
-
In Chapter 3,we derive the second-order-derivative-free iterations with two parameters from the third-order iterations with one parameter to approximate the roots of nondifferentiable equations in Banach space.
第三章,从带一个参数的三阶迭代族出发,构造了一族免二阶导数计值带两个参数的迭代族,用其去逼近Banach空间中非线性算子方程的解。
-
In Chapter 2, an existence theorem is obtained for periodic solutions of non-autonomous second order systems with even-typed potentials. We also investigate solutions of linear bounded positive self-conjugation operators equations in Hilbert Space by variation methods.
第二章主要利用临界点理论中的归药方法、极小作用原理研究具偶型位势的二阶非自治系统周期边值问题,得到了周期解的存在;利用变分方法证明了Hilbert空间中有界线性正自共轭算子方程解的存在性。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。