算子函数
- 与 算子函数 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Though comparing Canny operator and center B spline dyadic wavelet, the following conclusion is proven in this dissertation: a Center B spline function has tight support and Canny operator hasn't. b Center B spline function asymptotic convergence to Gaussian function and the derivative of Center B spline function asymptotic convergence to Canny operator. c The derivative of fourth order center spline B function is more suitable as a optimal edge detector than Canny operator. d Center B spline function can balance the smoothing and approximation of original data, and the fourth center B spline function is the only optimal solution of two order smoothing problem. e The error between the valve of time-frequency uncertainty of the fourth center B spline function and the lower bound of time-frequency uncertainty does not exceed 0.143% of the lower bound. f The derivative of center spline B function can construct a stability dyadic wavelet and can give a fast algorithm for multiscale edge detection, but Canny operator can do neither.
作者给出了Canny算子与中心B样条二进小波严格的比较证明,得出如下结论:a中心B样条函数具有紧支集,Canny算子不具有紧支集。b中心B样条函数的极限收敛于高斯函数,中心B样条函数的导数收敛于Canny算子。c四阶中心B样条函数的导数比Canny算子更接近最佳边缘检测滤波器。d中心B样条函数比高斯函数更能兼顾对原函数平滑和逼近的折中要求,并且四阶中心B样条函数是二阶逼近问题的唯一最优解。e四阶中心B样条函数的时频测不准关系值与时频测不准关系下界的逼近误差不超过0.143%。f中心B样条函数的导数可以构成稳定的二进小波,存在快速的多尺度算法;而Canny算子不构成稳定的二进小波,无法给出快速的多尺度算法。
-
Research emphasis is put on thefollowing aspects:First,study of multiwavelet basis(e.g.periodic vector,interpolation vector,multi-dimensional vector)suitable for different practical demands.Second,from perspective of operatorapproximation order,study of normal function approximation operator,contrast and comparison ofwavelet operator and multiwavelet operator and their respective applicable fields.And further,onbasis of the above,exploration of approaches of multiwavelet analysis application in function spacetheoretical research,and higher-lever,more convenient approaches for multi-function spaceapproximation theoretical research.Third,by fully employing unique features of multiwavelet,research action of multiwavelet analysis in the construction of L〓space non-conditionalbasis.Fourth,research such as transient signal analysis,image edge extraction,datacompression,fractal signal analysis.
其一,研究适宜于不同实际问题需要的向量小波基(如周期向量小波、插值向量小波、高维向量小波等);其二,从算子逼近阶的角度研究一般函数逼近算子、小波算子和向量小波算子的异同点以及较优适用领域;在此基础上,探索将向量小波分析应用于函数空间理论研究的途径,寻找更高层次、更便捷地研究多元函数空间逼近理论的方法;其三,充分利用向量小波所独具的完美性质,探索在〓空间〓无条件基的构造中,向量小波分析的价值;其四,对向量小波适用的信号瞬态分析、图像边缘分析、数据压缩保真、分形信号分析等领域应给予特别的重视。
-
Although many results have been obtained, there are still a number of very interesting questions about composition operators unsolved. There is much more to be learned about the collective compactness and convergence of composition operator sequences, compactness of various product of composition operators, cyclicity, closed range and spectra of composition operators in various settings. Commutants of composition operators seem to be very difficult to characterize. Only a little is known about their reducing invariant subspaces. There has been no work on C〓 algebras generated by composition operators.
尽管已取得如此丰富的结果,但是关于复合算子仍然有大量非常有意义的问题值得研究,例如:复合算子序列的总体紧性及收敛性、复合算子的各种乘积的紧性、复合算子的闭值域问题、复合算子在各种解析函数空间上的谱的描述、换位复合算子的刻画、复合算子诱导的不变子空间问题、循环复合算子的研究、由复合算子生成的C〓-代数的研究、不同解析函数空间之间的加权复合算子及复合算子半群等等问题。
-
Iii By using the well-known properties of the dela vallee-poussin summability kernels and the pass principle of weakly compact operator, we study the weak compactness of C〓 on vector-valued analytic function spaces H〓, B〓, N and N〓, establish some connections between the weak compactness of composition operators and the structure properties of Banach spaces. These generalize and unify the corresponding results in the scalar-valued setting and enrich the content of the study of composition operator in another way.
第三,利用著名的de la Vallee-poussin可和核及有关算子的弱紧性的传递原理给出了向量值解析函数空间H〓、B〓、N及N〓上的复合算子的弱紧性的刻画,建立了复合算子的弱紧性与Banach空间的结构性质之间的联系,统一和推广了对应的数量值解析函数空间上的复合算子的弱紧性,这从另一种途径极大地丰富了复合算子的研究内容。
-
In the chapter 7, by virtue of Ky Fan's results in operator spectral theory, we convert several meaningful conclustions in the theory of Holomorphic fucntions into the corresponding results of operator functions in Hilbert space.
在第7章中,我们应用算子谱集理论中的Ky Fan关于Von Neauman不等式的一个结果,把解析函数论中一些有意义的结论转化到Hilbert空间的算子函数上来建立相应的结果。
-
Secondly, we introduce the integral operator , where is an operator-valued functions, and derive some argument properties of the integral operator and some interesting corollaries as the special case.
二、将一类被积函数为复值函数的积分算子推广到被积函数为解析算子值函数的情况,并讨论了这类积分算子的辐角性质。
-
The main goal is to use some results and methods from classical analytic-function theory to determine some of the most basic questions you can ask about linear operators and functional space. At the same time using functional space theory and operator theory as a tool to study the classical questions in function theory.
解析复合算子的研究是解析函数论和算子理论结合的产物,其目的是利用经典解析函数论中的方法与结论探讨泛函空间与算子理论中的一些最基本的问题,同时也以泛函空间与算子理论为工具研究函数论中的经典问题。
-
Based on the fundamental works done by professor Fan Ky, who was the founder of this direction, the present paper introduces the definitions of the class of meromorphic univalent operator-valued functions with positive operator coefficients on Hilbert space and the argument of the operator-valued functions, improves and extends some problems in classical geometry theory of complex functions to the case of operator-valued functions, and studies them respectively.
基于该方向的首倡者Fan Ky教授关于该理论的奠基性工作,本文引入了一类星形算子值函数的定义以及解析算子值函数辐角的定义,将经典的复变函数几何理论中的一些问题推广到了解析算子值函数的情况,并分别进行了讨论。
-
The theory of operator functions is a new direction in the theory of functions.
算子函数论是函数论学科中的一个新方向。
-
The process of our study links some of the most basic questions about C〓 with beautiful classical results from analyticfunction theory. For instance, it is essential Littlewood subordination theorem that assures that composition operators act boundedly on many analytic function spaces. And there are close connections between the compactness of C〓 and the existence of angular derivatives of ψ at points of 〓D. It involves the classical Julia-Careatheodory theorem, Denjoy-Wolff theorem and Nevanlinna counting functions and so on. It makes many old theorems in analytic-function theory getting some new meanings, and bestows upon functional analysis an interesting class of linear operators. This thesis consists of six chapters as follows: Chapter 1 is a preparatory in nature.
从而建立了C〓的算子性质与解析函数论中许多漂亮的经典结果之间的联系,如许多解析函数空间上复合算子的有界性本质上往往是著名的Littlewood从属原理,复合算子的紧性与其诱导映射在边界〓D上的角导数之间有着紧密的联系等等,这样自然而然地涉及到经典函数论中的Julia-Caratheodory定理,Denjoy-Wolff定理及Nevanlinna计数函数等等一些结果,并以此赋予函数论中许多古老问题以新意,同时也为泛函分析提供了一类十分具体的线性算子。
- 推荐网络例句
-
The split between the two groups can hardly be papered over.
这两个团体间的分歧难以掩饰。
-
This approach not only encourages a greater number of responses, but minimizes the likelihood of stale groupthink.
这种做法不仅鼓励了更多的反应,而且减少跟风的可能性。
-
The new PS20 solar power tower collected sunlight through mirrors known as "heliostats" to produce steam that is converted into electricity by a turbine in Sanlucar la Mayor, Spain, Wednesday.
聚光:照片上是建在西班牙桑路卡拉马尤城的一座新型PS20塔式太阳能电站。被称为&日光反射装置&的镜子将太阳光反射到主塔,然后用聚集的热量产生蒸汽进而通过涡轮机转化为电力