算了
- 与 算了 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In this paper, we proposed continuous interval argument OWH operator for aggregating continuous interval argument on the basis of ordered weighted harmonic averaging operator.
本文首先把OWH算子推广到了连续区间上,提出了连续的区间数据OWH算子,然后在此基础上提出了加权调和的C-OWH算子,有序加权C-OWH算子以及组合的C-OWH算子等新的概念,探讨了它们的一些性质。
-
In this paper, we proposed continuous interval argument OWH operator for aggregating continuous interval argument on the basis of ordered weighted harmonic averaging operator. Based on C-OWH operator, we proposed some new concepts, such as weighted harmonic C-OWH operator, ordered weighted harmonic averaging C-OWH operator, combined C-OWH operator, and we discussed some properties of these operators.
本文首先把OWH算子推广到了连续区间上,提出了连续的区间数据OWH算子,然后在此基础上提出了加权调和的C-OWH算子,有序加权C-OWH算子以及组合的C-OWH算子等新的概念,探讨了它们的一些性质。
-
In order to find a stable approximate solution of linear compact operator equation, the article introduces general theories about ill-posed problems, it bases on spectral theory of self-adjiont compact operators and the singular value decomposition for compact operators, avails singular system to give expression of the solution, and explains ill-posedness of compact operator equation roots in the property that the singular values trends to zero. Thereout, it is provided with theoretic support of building up regularization method by inducting regularization filter to weaken or filtrate the influence that the nature of the singular value being very close to zero has on the solutions stability.
为了得到线性紧算子方程稳定的近似解,介绍了不适定问题正则化的一般理论,以自伴紧算子的谱分析与紧算子奇异值分解为理论基础,利用奇异系给出了解的表达式,说明了紧算子方程不适定性的根源在于紧算子的奇异值趋于零的性质,由此通过引入正则化滤子函数来减弱或滤掉奇异值趋于零的性质对解的稳定性的影响,构造正则算子,从而提供了建立正则化方法的理论依据。
-
Iii By using the well-known properties of the dela vallee-poussin summability kernels and the pass principle of weakly compact operator, we study the weak compactness of C〓 on vector-valued analytic function spaces H〓, B〓, N and N〓, establish some connections between the weak compactness of composition operators and the structure properties of Banach spaces. These generalize and unify the corresponding results in the scalar-valued setting and enrich the content of the study of composition operator in another way.
第三,利用著名的de la Vallee-poussin可和核及有关算子的弱紧性的传递原理给出了向量值解析函数空间H〓、B〓、N及N〓上的复合算子的弱紧性的刻画,建立了复合算子的弱紧性与Banach空间的结构性质之间的联系,统一和推广了对应的数量值解析函数空间上的复合算子的弱紧性,这从另一种途径极大地丰富了复合算子的研究内容。
-
In this paper,four aspects of the above problems were studied:Firstly, the problem of solving continuous linear operator equation inseparable Hilbert space is studied .
通过把第一类连续不适定算子方程转换为等价的无穷维方程组,然后利用投影法,给出了解存在唯一的充要条件;给出了连续线性不适定算子方程解析解,解决了不适定情况下解的表示问题,由此给出了算子方程的数值求解公式;进一步证明了,在解不唯一情况下,此表达式给出的解为算子方程的最小范数解,同时表示出了连续线性不适定算子方程的解集。
-
Through the Radon transformation of the normally ordered Wigner operator we introduce two mutually conjugate intermediate coordinate- momentum representations. Based on them we construct the appropriate quantum phase space theory which includes the new Wigner operator adapting to this space and construct the appropriate generalized Fredholm operator equation and then find its solution. We then deriving the Hermite polynomials operator identities by applying the Fredholm equation. We also reveal the connection between the generalized Wigner operator and the 2-dimension normal distribution in statistics, which is useful to study the quantum tomogram. As the application of the entanglement Husimi operator theory we calculate the Wigner function and the Husimi function of the one- and two-mode combination squeezed state , study their characters through drawing the three-dimensional graphics.
由正规序Wigner算符的拉登变换引入了两个互为共轭的中介坐标-动量表象,在此基础上我们建立了相应的量子相空间理论,其中包括引入适合该空间的新的Wigner算符;并在该表象的基础上,建立了广义Fredholm算符方程,求出了它的解,并运用该方程导出有关厄米多项式的算符公式;揭示广义Wigner算符与统计学中的随机变量的二维正态分布形式上的相似,这对于研究量子态的tomogram(是英文Tomography的派生词)有用。
-
The main results are as follows: the relations between local fractional integrated semigroups and the corresponding Cauchy problem, global fractional integrated semigroups and regularized semigroups are given; introduction of the notion of regularized resolvent families, and the generation theorem and analyticity criterions for regularized resolvent families are obtained; the spectral inclusions between fractional resolvent family and its generator, and the approximation for fractional resolvent families in the cases of generators approximation and fractional orders approximation; elliptic operators with variable coefficients generating fractional resolvent family on L^2 by using numerical range techniques; and the L^p theory for elliptic operators with real coefficients highest order are obtained by Sobolev''s inequalities and the a priori estimates for elliptic operators; and a kind of coercive differential operators generates fractional regularized resolvent family by applying the Fourier multiplier method, functional calculus and some basic properties of Mittag-Leffler functions.
主要结论是:给出了局部分数次积分半群和相应的Cauchy问题的关系以及分数次积分半群和正则半群的关系;引入了正则预解族的概念,并给出了其生成定理和解析生成法则;给出了分数次预解族与其生成元的谱包含关系,并研究了在生成元逼近和分数阶逼近两种情况下相应的预解族的逼近问题;利用数值域方法证明了具变系数的椭圆算子在L^2上生成分数次预解族;利用Sobolev不等式和椭圆算子的先验估计证明了具变系数的椭圆算子在其最高项系数为实数时在L^p上生成分数次预解族;运用Fourier乘子理论、泛函演算和Mittag-Leffler函数证明了一类强制微分算子可以生成分数次正则预解族,并给出了该预解族的范数估计。
-
The main results are:(1) the L1 boundedness of the Cesaro means operator of the harmonic expansions on the unit sphere with reflection-invariant measures is proved, and the characterization of the convergence index is given; for the points not in the planes with singularities, the pointwise convergence is also proved; these results are the generalizations of those both for the classical spherical harmonic expansions and for the Jacobi expansions;(2) Using the differential-reflection operators of Dunkl type, the uncertainty principle of a class of Sturm-Liouville operators is established, and as consequences, the uncertainty principles of some well-known classical orthogonal expansions such as Jacobi, Hermite and Laguerre expansions are obtained;(3) by introducing the Cauchy-Riemann equations in terms of the differential-reflection operators of two variables, the harmonic analysis of the extended Jacobi expansions is studied; the results include the Lp boundedness and the weak-L1 boundedness of the conjugate extended Jacobi expansions; specially, for some indexes p smaller than 1, the basic theory of the related Hardy spaces is established.
主要成果有:(1)证明了带有反射不变测度的球面调和展开蔡沙罗平均算子的L1有界性,给出了收敛指标的特征刻划,对不在奇性平面上的点,还证明了点态收敛性,这些成果同时推广了经典球面调和展开和雅可比展开的结果;(2)利用Dunkl型的微分-反射算子建立了一类斯特姆-刘威尔算子的测不准原理,并由此得到一些著名的经典正交展开如雅克比展开、赫米特展开和拉盖尔展开的测不准原理;(3)利用由两个变量的微分-反射算子定义的柯西-黎曼方程组来研究扩展雅克比展开的调和分析,证明了共轭扩展雅克比展开的Lp有界性和弱L1有界性,特别是对小于1的一些指标p,建立了相应的哈代空间的基本理论。
-
Perfect aspectual operator, experience aspectual operator, progressive aspectual operator, and short aspectual operator are veridical operators;⑵Chinese PPIs can be license d by veridical operators;⑶PPIs and NPIs in Mandarin Chinese distribute symmetrically and are unified underveridical contexts.
本论文从汉语时态的角度,对汉语中的时态算子对汉语正极项的允准进行了初步的研究;并试图证明以下三个问题:⑴汉语中的时态算子:完成态算子,经历态算子,进行态算子,及短暂态算子为真实性算子;⑵汉语中的正极项能够被真实性算子允准;⑶汉语中的正极项与负极项呈对称性分布,并统一于真实性语境。
-
InSection 2,we give several sufficient conditions for the existence of one solution,multiplesolutions and infinitely many solutions of the Sturm-Liouville bvps via the generalizedpolar coordinates.Then in Section 3,the existence of positive solutions are proved undersuperlinearity,sublinearity and many other conditions by a fixed point theorem in cones.Our results have generalized those in many articles.A detailed discussion of periodic solu-tions of a kind of functional differential equations with high-order Laplacian-like operatorcan be found in Section 4 and this subject has not been studied before.
在第二节,我们定义了一种新的坐标变换-广义极坐标,并利用它讨论了p-Laplacian算子和Laplacian-型算子的Sturm-Liouville边值问题,分别得到了存在一个解、多个解、无穷多个解的多个充分条件;第三节研究p-Laplacian算子的Sturm-Liouville边值问题正解的存在性与多重性,采用的是锥上的不动点定理,全面推广了这一方面已有的结果;对目前研究较少的高维Laplacian-型算子及带有Laplacian-型算子的泛函微分方程的周期解问题,我们在第四节做了一些研究,这也是拓扑方法的一个应用。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。