英语人>网络例句>稳定收敛 相关的搜索结果
网络例句

稳定收敛

与 稳定收敛 相关的网络例句 [注:此内容来源于网络,仅供参考]

Paper studies the practical stability of electricity market models by tools, for example, the appropriate structure Lyapunov functions, Cauchy matrix, the matrix measure, constant variation. Judging practical stability sufficient conditions and estimating formula of ultimate convergence boundary are provided. Conditions are descriptive by coefficients of models. At the same time, paper studies the Lyapunov stability of the electricity market. As well as the sufficient conditions of judging electricity market Lyapunov stability are provided. Some of conclusions improved the results of Alvarado and others. The conclusion of Lyapunov stability has made a comparative with practical results.

首次将实用稳定性理论和方法应用于电力市场稳定性的研究中,借助于构造合适的Lyapunov函数、柯西矩阵、矩阵测度、常数变易法等工具,系统研究了所建电力市场模型的实用稳定性,得到了用模型的系数来描述其实用稳定性的一系列判定条件和最终收敛边界的估计公式;同时对电力市场的Lyapunov稳定性进行了研究,得到了电力市场稳定性的若干判据,部分结论改进了Alvarado等人的结果;随后将Lyapunov稳定的结果与实用稳定进行了比较。

The difference schema of the initial boundary value problem was converted to the step-by-step form,which was similar to the difference schema of the initial value problem.It is concluded that the difference schema satisfying the Von Neumann condition is a stable schema,and that,under the consistency condition,such stable schema is convergent.Moreover,with error estimate expression for the difference approximation to the classical solution,the linearity condition is unnecessary.

引入反投影算子将发展方程初边值问题的差分格式转化为与初值问题差分格式类似的逐步推进的形式,从而得出:满足Von Neumann条件的差分格式是稳定的格式;在相容条件下,差分格式若稳定(或满足VonNeumann条件)则格式收敛,且对古典解的差分逼近有误差估计式,不再需要线性的条件。

And we show that random walk model converges to the stable law of Lévy-Feller advection-dispersion equation by use of a properly scaled transition to vanish-ing space and time steps,We propose an explicit finite difference approximation for Lévy-Feller advection-dispersion equation.

第三章讨论描述服从某种稳定分布反常扩散的非对称空间分数阶对流-扩散方程——Lévy-Feller对流-扩散方程,首先利用Fourier变换和Laplace变换给出方程的基本解,然后利用Grünwald-Letnikov分数阶导数移位离散算子离散方程中的Riesz-Feller分数阶导数得到离散格式,证明此格式可以解释为离散随机游走模型,并且证明了当时间和空间步长以一定的比率同时趋于0时,所提出的离散随机游走模型收敛到Lévy-Feller对流-扩散过程的稳定分布。

This project also obtained several limit theorems for some important dependent random variables and stochastic processes, such as the Strassen law of the iterated logarithm for negatively dependent random variables, strong limit theorems for mixing random vectors in Banach spaces, sample path properties for two-parameter fractional Wiener processes, and so on.

随机环境中的随机变量与随机过程的研究在国内外相当活跃,本项目主要研究它们的极限性质,着重研究了随机风景中随机变量与随机过程的极限性质,主要取得了以下几个结果:首先对简单对称的Kesten-Spitzer随机游动在低阶矩的条件下给出了强逼近,大大减弱了前人要求任意阶矩的条件,然后对独立风景中的一般随机变量给出了强逼近的一般性结果,由此导出在风景和随机变量都只具有低阶矩的条件下的独立但不同分布、混合相依变量的强逼近,在只有弱高于二阶矩的条件下得到了重相对数律和弱收敛;给出了连续时间参数的Brown风景中Brown运动和稳定风景中稳定过程的滞后增量和连续模等精确样本轨道性质;同时给出了一些重要的相依随机变量和过程的若干极限定理,如负相关随机变量的Strassen重对数律、抽象空间上混合相依变量的一些强极限定理成立的充分必要条件、两参数分数Wiener过程的样本轨道性质等。

Here pis 1 or 2.In chapter 8. we extend the Runge-Kutta methods to variable delay differentialalgebraic system. It is proved that if the Runge-Kutta method which is algebraicallystable and diagonally stable is consistent with order p , the extended Runge-Kuttamethod with Lagrange interpolation procedure is D_A-convergence with order M. HereM=min{p, u + q + 1 }, and u + q is the degree of Lagrange interpolation polynomial.

第八章将求解常微分方程的Runge-Kutta方法改造后用于求解变延迟微分代数系统,并且证明如果代数稳定且对角稳定的Runge-Kutta方法对于常微分方程初值问题在经典意义下是p阶相容的,那么具有Lagrange插值过程的该方法是M阶D_A-收敛的,M=min{p,u+q+1},u+q为Lagrange插值多项式的次数。

To implement this function, it must be a complete stable network, namely, its all output tracks must converge at a stable equilibrium point.

它为了完成这个功能,它必须是一个完全稳定的网络,即所有输出轨迹必须收敛到一个稳定的平衡点。

With the idea of smoothing Newton method, we propose a new class of smoothing Newton methods for the nonlinear complementarity problem based on a class of special functions. In this paper, complementarity problem is converted into a series of smoothing nonlinear equations and a modified smoothing Newton algorithm is used to solve the equations. We use Newton direction and Gradient direction together in the algorithm which guarantees that our method is globally convergent. Also using another smoothing function, we reformulate the generalized nonlinear complementarity problems defined on a polyhedral cone as a system of smoothing equations and a smooth unconstrained optimization problem. Theoretical results that relate the stationary points of the merit function to the solution of the generalized nonlinear complementarity problems are presented, we use the modified smoothing Newton algorithm in generalized nonlinear complementarity problems, under mild hypothesis, a global convergence is proved.

本文一方面基于现有的各种光滑Newton法的思想和半光滑理论,利用著名的F-B互补函数的光滑形式,首先将互补问题的求解转化为求解一系列光滑的非线性方程组,然后给出了一种修正的光滑Newton法,该方法不仅放宽对函数F的要求,在Newton方程不可解时引入初始效益函数的最速下降方向,而且光滑因子的选择也比较简单可行,同时在适当的条件下,证明了其算法具有全局收敛性;另一方面,借助另一种F-B光滑函数,将多面体锥上的广义互补问题转化为一种光滑形式,讨论了优化问题的稳定点与广义非线性互补问题的解之间的理论关系,并将这种修正的光滑Newton法用于求解广义非线性互补问题中,在适当的条件下,该算法同样具有全局收敛性。

Then we can establish global convergence to a stationary point, that is, if {xk} is the sequence generated by the affine-scaling interior-point trust-region method, then every limit point of the sequence is a stationary point for the problem.

其次我们建立了收敛到一个稳定点的全局收敛结果,即若{x_k}是由仿射尺度内点信赖域法产生的序列,则序列的每个极限点都是问题的一个稳定点。

This scheme, by a rigorous analysis, is proved to be unconditionally stable and convergent, its global error order is also obtained.

经过严格的理论分析,证明了该差分格式是唯一可解的、无条件稳定的和收敛的,并给出了收敛阶。

Unstable solution that may exist in SIRT or SART which converges to the Solution of a least-square problem is avoided.

阻尼代数重建技术,这种方法收敛于阻尼最小二乘解,因而克服了收敛于最小二乘问题的SIRT、SART法可能出现的不稳定解。

第4/11页 首页 < 1 2 3 4 5 6 7 8 9 ... > 尾页
推荐网络例句

This one mode pays close attention to network credence foundation of the businessman very much.

这一模式非常关注商人的网络信用基础。

Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.

扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。

There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.

双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。