矩阵的矩阵
- 与 矩阵的矩阵 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The Matrix 矩阵矩阵矩阵矩阵 Some organizations fall somewhere between the fully functional and pure matrix.
一些组织介于纯功能和纯矩阵之间。这些组织被定义到项目管理知识手册里的第四版。
-
Optimizing and Realization of the Finite Field Inversion Algorithm Based on FPGA;2. The stability and operation of the inversion formula for Toeplitz matrices are also considered.
利用两个线性方程组是否有解给出了Toeplitz矩阵可逆的条件,表明Toeplitz矩阵之逆阵可以表示为φ-循环矩阵与上三角Toeplitz矩阵的乘积之和,给出了其逆矩阵列的递推公式,得到了求Toeplitz矩阵之逆矩阵的快速算法。
-
Therefore, in order to offer reference to Readers, based on idempotent matrix, involutory matrix, nilpotent matrix, diagonal matrix, the main character of special matrix are proved in this paper after the Defined and algorithm of eigenvalue of matrix .for example , some problems of the eigenvalues of matrix are solved in a special method based on the eigenvalues of matrix .
为此, 本文除了介绍矩阵特征值的定义和算法外,还围绕幂等矩阵、幂零矩阵、对角矩阵、等特殊矩阵给出了其主要性质并加以证明,同时还介绍了一些特殊矩阵的特征值的算法,例如:本文利用矩阵的特征值,对与矩阵的特征值相关的一些典型问题给出了较好的处理方法。
-
We call L n=1-matrices for N_0~1-matrices. Meyer introduced the concept of the Perron complement of a nonnegative and irreducible matrix in 1989 and used it to construct an algorithm for computing the stationary distribution vector for Markov chains. We extend the Perron complements of nonnegative and irreducible matrices to the Perron complements of nonpositive and irreducible matrices.
我们这里是把Perron余的概念推广到了非正不可约矩阵,显然它也具有非负矩阵相类似的性质,逆N 01矩阵又是特殊的非负矩阵,我们证明了在一定条件下,逆N 01矩阵和N 02矩阵的广义Perron余的继承性,并给出了相关的不等试:逆N 01矩阵和N 02矩阵的广义Perron余逆矩阵的不等式;逆N 01矩阵的主子阵与其逆矩阵的不等式。
-
In this paper, firstly, not only the incidence matrix ,adjacent matrix, cycle matrix, cut-set matrix of an undirected graph are summarized, but also the close contact between a graph and its corresponding matrix are discussed ; secondly, many problems of a graph which are solved by analysing its matrix are listed as follows:1、The co-tree set of a graph is obtained by using its cycle-matrix ; 2、The branches of its spanning tree are given by using its cut-set matrix ; 3、By making use of the incidence matrix of a graph ,not only its vertex cut 、cut vertex 、isolated point and spanning tree can be obtained ,but also the two sides which are whether parallel or not can be judged ;4、By using their adjacent matrix ,the two graphes which are whether isomorphous or not can be judged; once more, there is a detailed introduction in view of special graph (for example: bigaritite graph ,regular graph and so on);last but not least, a graph method of calculating the N power of a matrix is given and the practical applications of the theorem for degree is indicated.
本文首先综述了无向图的关联矩阵,邻接矩阵,圈矩阵,割集矩阵以及图和它对应矩阵之间的关系;其次总结出了利用上述各类矩阵可以解决的图的若干问题:1、利用图的圈矩阵可以求其连枝集;2、利用图的割集矩阵可以求其生成树的树枝;3、利用图的关联矩阵不仅可以求其割点、点割集、连通度、孤立点和生成树,而且可以判断两条边是否平行;4、利用图的邻接矩阵可以判断两个图是否同构;再次,针对特殊图(例如:二分图、正则图等等)的邻接矩阵作了详细介绍;最后,得到了利用图计算矩阵的N次幂的方法,指出度数定理的实际应用。
-
In this dissertation, we construct the Bariev model with nine kinds of boundary fields by the matrices K_± defining the boundaries. And then the Lax operator is given in the form ofmatrix, as well as the basic quantities, e.g., the R -matrix, the monodromy matrices and the transfer matrices are defined. By using the expression of the local Lax operator of the model,the action of the monodromy matrices T, T~(-1), U_ on the pseudo-vacuum state is given outin detail. Furthermore, the main fundamental commutation relations are obtained through the reflection equations, the recursive n-particle state as well as the one-particle exact solution is given and the Bethe ansatz equations are found accordingly. Finally, we list the nesting boundary K matrices, which play a crucial role for obtaining the n-particle solution and finding the Bethe ansatz equations, the eigenvalues of the transfer matrices and the energy spectrum of the system by means of the nested algebraic Bethe ansatz method.
在这篇文章中,我们利用边界K_±矩阵构造出了具有九种边界场的Bariev模型,同时给出了该模型L算子的具体矩阵表示形式,并定义了R矩阵,monodromy矩阵以及转移矩阵;接着利用L算子的矩阵形式,给出了其对应monodromy矩阵T、逆矩阵T~(-1)作用到真空态上的值,并利用Yang-Baxter关系及反射方程得到了双行monodromy矩阵U作用到真空态上的值;然后利用反射方程通过复杂的计算得到了一系列重要的基本对易关系式,并给出了模型的递推的多粒子波函数、单粒子解及Bethe ansat方程;最后给出了模型的嵌套的边界K矩阵的具体形式,从而为运用嵌套Bethe ansatz方法求解该模型的多粒子解、Bethe ansatz方程以及系统的能谱打下了很好的基础。
-
This chapter clarifies the nested relationship between the matrix family of unitary, orthogonal, Givens, Householder, permutation, and row or column symmetric matrices. A precise correspondence of the singular values and singular vectors between the unitary-symmetric matrix and its mother matrix is derived and proved (hence a fast algorithm of singular value decomposition for unitary-symmetric matrix is straightforwardly obtained), and the corresponding perturbation bound is provided.
该章揭示了酉对称矩阵、正交对称矩阵、 Givens 对称矩阵、 Householder 对称矩阵、置换对称矩阵和行对称矩阵之间的逐级包含关系;推导并证明了,酉对称矩阵的奇异值和奇异向量与母矩阵的奇异值和奇异向量之间的定量关系,据此可得酉对称矩阵奇异值分解的快速算法;给出并证明了摄动矩阵的摄动界。
-
Our results improve the former results. For periodic Jacobi matrix, some new spectral properties of periodic Jacobi matrix are given by studying the relationship of the eigenvalues of periodic Jacobi matrix and its n—1 principal submatrix. Applying these spectral properties, we present a necessary and sufficient condition for the solvability of an inverse problem of periodic Jacobi matrices and discuss the number and the relationship of its solutions. Furthermore, we propose a new algorithm to construct its solution and compare it with the former algorithms. As this inverse problem of periodic Jacobi matrix usually has multiple solutions as many other eigenvalue inverse problems, we study the uniqueness of this problem. And a necessary and sufficient condition is given to ensure its uniqueness, under which an algorithm is presented and the stability analysis is also given. Finally, we put forward a new inverse problem for periodic Jacobi matrix which has not been solved.
对周期Jacobi矩阵特征值反问题,通过研究周期Jacobi矩阵与其n-1阶主子阵特征值的关系,给出了周期Jacobi矩阵的一些新的谱性质;利用这些谱性质,研究了一类周期Jacobi矩阵特征值反问题,用新的方法推导出了该类特征值反问题有解的充分必要条件,并讨论了解的个数以及解与解之间的关系;此外,提出了一种新的构造周期Jacobi矩阵反问题解的数值算法,并与前人的算法做了一定比较;由于周期Jacobi矩阵特征值反问题和其他很多特征值反问题一样往往存在多个解,本论文给出了周期Jacobi矩阵反问题解唯一的充要条件,并发现周期Jacobi矩阵特征值反问题的解唯一当且仅当构造的矩阵满足一定的条件;在解唯一的情况下,给出了构造唯一解的数值算法,并做了相应的稳定性分析;最后,提出了一类新的有待于解决的周期Jacobi矩阵特征值反问题。
-
On the basis of the definition of matrix traces , this paper discusses their characteristics at first and then according to the norm of the F of square matrix and Cauchy-Schwarz inequality gives how to prove the zero matrix, unsimilar matrix, number cloth matrix, column matrix idempotent matrix and non-equality matrix.
根据矩阵迹的定义,首先给出了矩阵迹的性质,然后依据方阵的F—范数定义Cauchy—Schwarz不等式,给出了零矩阵,不相似矩阵,数幂矩阵,列矩阵,幂等矩阵及矩阵不等式的证法。
-
Positive study results show that the estimative error of this approach is smaller than the Cohort approach and Jarrow's approach, especially in the period which macro economic condition changing dramatically.
第三章在Jarrow等(1997)研究的基础上,使用非时齐条件Markov链描述信用评级迁移过程,将信用评级迁移的生成矩阵进行对角化处理,给出信用评级迁移矩阵与生成矩阵的关系;然后,利用Cox风险模型将宏观经济影响因子CFNAI考虑在内,得到信用评级迁移的生成矩阵;继而借助于信用评级迁移矩阵与生成矩阵的关系得到信用评级迁移矩阵;最后使用信用评级迁移矩阵的历史数据对本文估计方法的有效性进行了检验。
- 推荐网络例句
-
I didn't watch TV last night, because it .
昨晚我没有看电视,因为电视机坏了。
-
Since this year, in a lot of villages of Beijing, TV of elevator liquid crystal was removed.
今年以来,在北京的很多小区里,电梯液晶电视被撤了下来。
-
I'm running my simile to an extreme.
我比喻得过头了。