矩阵
- 与 矩阵 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Therefore, in order to offer reference to Readers, based on idempotent matrix, involutory matrix, nilpotent matrix, diagonal matrix, the main character of special matrix are proved in this paper after the Defined and algorithm of eigenvalue of matrix .for example , some problems of the eigenvalues of matrix are solved in a special method based on the eigenvalues of matrix .
为此, 本文除了介绍矩阵特征值的定义和算法外,还围绕幂等矩阵、幂零矩阵、对角矩阵、等特殊矩阵给出了其主要性质并加以证明,同时还介绍了一些特殊矩阵的特征值的算法,例如:本文利用矩阵的特征值,对与矩阵的特征值相关的一些典型问题给出了较好的处理方法。
-
This dissertation mainly investigated two frameworks of H-matrix, such as SPB framework consisting of integer Subscript matrix, Permutation matrix and Bidiagonal matrix and MSPT framework consisting of Masking matrix, sparse Subscript matrix, Permutation matrix and approximately lower Triangular array matrix.
本文主要研究了两种H矩阵的类随机框架结构模型,一是SPB框架,由整数下标矩阵、置换矩阵、双对角线矩阵构成;二是MSPT框架,由稀疏下标矩阵、模板矩阵、置换矩阵和近似下三角阵列矩阵构成。
-
Missirlis in article [1]. At the same time, a sufficient condition for convergence of the PSD method is given to be compared when the coefficient matrix A of the linear system Ax = b is a symmetric, positively defective matrix. In §3.2, an example is given to state that the range of our sufficient condition is wider than theorem 3.3 of article [1]. On the other hand, following a.n analogous approach of [14] and starting the functional relationshipwe have a perfect analysis for the PSD method to converge and optimum valves for the involved parameters under different conditions.Under the assumptions that A is a consistent ordered matrix with nonvanishing diagonal elements and the eigenvalues of the Jacobi matrix of A are real,we get necessary and sufficient conditions for the PSD method to convergence.The result is equal to theorem 1 of article [9].Under the same condition, we can see the optimal parameter and of corresponding spectral radius of thePSD method in [8]:(2)When A is a consistent ordered matrix with nonvanishing diagonal elements and the eigenvalues of the Jacobi matrix of A are imaginary or zero,we get necessary and sufficient conditions for the PSD method to convergence.In chapter 3, the optimal parameter and of corresponding spectral radius of the PSD method are given by table 3.3. Moreover, under the assumption 0
Missirlis在文献[1]中定理3.3的不准确,同时给出了当线性方程组Ax=b的系数矩阵A为对称正定阵时,PSD迭代法收敛的一个充分条件与之比较,并且在§2.3中用实例说明了对于一部分矩阵而言本文得到的充分条件广于[1]中定理3.3的充分条件;另一方面,按照文献[14]的方法,我们从PSD迭代法的特征值λ与其Jacobi迭代矩阵B的特征值μ的关系式:出发,在不同条件下对PSD迭代法的收敛性和最优参数以及最优谱半径进行了完整的分析:(1)在系数矩阵A为(1,1)相容次序矩阵且对角元全不为零,其Jacobi迭代矩阵B的特征值全为实数的条件下,给出了PSD迭代法收敛的充分必要条件,此结果与[9]中的定理1等价,此时最优参数及最优谱半径由[8]得:(2)第三章表3.3中给出了,当系数矩阵A为(1,1)相容次序矩阵且对角元全不为零,其Jacobi迭代矩阵B的特征值全为纯虚数或零时的PSD迭代法的收敛范围和最优参数,并且我们可以得到当0
-
In chapter one,we discuss tournament matrices that can not end in tie and theyare(0,1)-matrices,we first obtain a better lower bound for the number of regulartournament matrices,then we discuss the payoff matrix of tournament matrix,obtainsome properties of positive tournament matrices,a correlation between the spectralof a tournament matrix and its payoff matrix.We find serveal conditions that areequivalaent to a tournament matrix having 1 as its a eigenvalue.
第一章讨论不允许平局的竞赛矩阵-(0,1)-矩阵,得到了正则竞赛矩阵数目的一个下界,它改进了文献〓中已有的结果;在文献〓的基础上进一步讨论了正竞赛矩阵的性质,给出了利用已知平衡向量构造新平衡向量的方法;讨论了竞赛矩阵和它的支付矩阵的特征值之间的关系;指出了文献〓中的一个错误,回答了文献〓中的一个公开问题,得到了整数1为竞赛矩阵的特征值的充要条件及这种矩阵的谱根与得分向量之间的关系。
-
Five ways on comparing covariance matrix are applied to the Shanghai 50 Indexes Stock Exchange, which are sample covariance matrix, scalar matrix, two-parameter covariance matrix, single index matrix, constant correlation matrix. We adopt principal components method and Markowitz portfolio method to measure stock market risk using VaR, getting the effect of measuring market risk. The result shows that sample covariance matrix and two-parameter covariance matrix could measure market risk more effectively.
本文以上证50指数数据为样本,采用样本协方差矩阵、数量矩阵、两参数模型矩阵、单指数模型矩阵、常量相关矩阵作为与股票相关的协方差矩阵,结合投资策略选择的主成分方法和Markowitz最优投资组合方法,计算VaR以度量市场风险,并比较了五种协方差矩阵度量市场风险的效果,结果表明,在主成分方法中,样本协方差矩阵和两参数矩阵方法能有效的度量市场风险。
-
Our results improve the former results. For periodic Jacobi matrix, some new spectral properties of periodic Jacobi matrix are given by studying the relationship of the eigenvalues of periodic Jacobi matrix and its n—1 principal submatrix. Applying these spectral properties, we present a necessary and sufficient condition for the solvability of an inverse problem of periodic Jacobi matrices and discuss the number and the relationship of its solutions. Furthermore, we propose a new algorithm to construct its solution and compare it with the former algorithms. As this inverse problem of periodic Jacobi matrix usually has multiple solutions as many other eigenvalue inverse problems, we study the uniqueness of this problem. And a necessary and sufficient condition is given to ensure its uniqueness, under which an algorithm is presented and the stability analysis is also given. Finally, we put forward a new inverse problem for periodic Jacobi matrix which has not been solved.
对周期Jacobi矩阵特征值反问题,通过研究周期Jacobi矩阵与其n-1阶主子阵特征值的关系,给出了周期Jacobi矩阵的一些新的谱性质;利用这些谱性质,研究了一类周期Jacobi矩阵特征值反问题,用新的方法推导出了该类特征值反问题有解的充分必要条件,并讨论了解的个数以及解与解之间的关系;此外,提出了一种新的构造周期Jacobi矩阵反问题解的数值算法,并与前人的算法做了一定比较;由于周期Jacobi矩阵特征值反问题和其他很多特征值反问题一样往往存在多个解,本论文给出了周期Jacobi矩阵反问题解唯一的充要条件,并发现周期Jacobi矩阵特征值反问题的解唯一当且仅当构造的矩阵满足一定的条件;在解唯一的情况下,给出了构造唯一解的数值算法,并做了相应的稳定性分析;最后,提出了一类新的有待于解决的周期Jacobi矩阵特征值反问题。
-
On the basis of the definition of matrix traces , this paper discusses their characteristics at first and then according to the norm of the F of square matrix and Cauchy-Schwarz inequality gives how to prove the zero matrix, unsimilar matrix, number cloth matrix, column matrix idempotent matrix and non-equality matrix.
根据矩阵迹的定义,首先给出了矩阵迹的性质,然后依据方阵的F—范数定义Cauchy—Schwarz不等式,给出了零矩阵,不相似矩阵,数幂矩阵,列矩阵,幂等矩阵及矩阵不等式的证法。
-
Problem III Given find such thatProblem IV When Problem I or II or III is consistent, let Se denote the set of its solutions, for given , find , such thatwhere is Frobenius norm, S is Rn×p or a subset of Rn×p satisfying some constraint conditions, such as symmetric, skew-symmetric, centrosymmet-ric, centroskew symmetric, reflexive, antireflexive, bisymmetric or symmetric and antipersymmetric.
问题Ⅳ 设问题Ⅰ或Ⅱ或Ⅲ相容,且其解集合为SE,给定X0∈Rn×p,求X∈SE,使其中‖·‖为Frobenius范数,S为Rn×p或为Rn×p中满足某约束条件的矩阵集合,如对称矩阵、反对称矩阵、中心对称矩阵、中心反对称矩阵、自反矩阵、反自反矩阵、双对称矩阵、对称次反对称矩阵等。
-
R~, find∈S_E, such that ProblemⅤGiven, find [X_1,X_2,…,X_l](where X_i∈S_i,i=1,2,…,l), such that A_1X_1B_1+A_2X_2B_2+…+A_lX_lB_l=C ProblemⅥWhen ProblemⅤis consistent, let SE denote the set of its solutions, for given,find, such that where||·|| is Frobenius norm, S and S_i are the matrix set satisfying some constraint conditions such as symmetric, skew-symmetric, centrosymmetric, centroskew symmetric, reflexive, antireflexive, bisymmetric or symmetric and antipersymmetric.
R~,求∈S_E,使得问题Ⅴ给定,求[X_1,X_2,…,X_l](其中X_i∈S_i,i=1,2,…,l),使得 A_1X_1B_1+A_2X_2B_2+…+A_lX_lB_l=C 问题Ⅵ设问题Ⅴ相容,且其解集合为S_E,给定矩阵组,求,使得其中||·||为Frobenius范数,S,S_i为满足某种约束条件的矩阵集合,如对称矩阵、反对称矩阵、中心对称矩阵、中心反对称矩阵、自反矩阵、反自反矩阵、双对称矩阵、对称次反对称矩阵等等。
-
Denotes the Frobenius norm, S is a subset of Rn×n. This master thesishas mainly studied centrosymmetric matrix set, centroskew symmetric matrix set,re?
为Frobenius范数, S为Rn×n中满足某约束条件的矩阵集合,本硕士论文主要研究了中心对称矩阵、中心反对称矩阵、自反矩阵、反自反矩阵、双对称矩阵、对称次反对称矩阵、对称正交对称矩阵、对称正交反对称矩阵。
- 推荐网络例句
-
On the other hand, the more important thing is because the urban housing is a kind of heterogeneity products.
另一方面,更重要的是由于城市住房是一种异质性产品。
-
Climate histogram is the fall that collects place measure calm value, cent serves as cross axle for a few equal interval, the area that the frequency that the value appears according to place is accumulated and becomes will be determined inside each interval, discharge the graph that rise with post, also be called histogram.
气候直方图是将所收集的降水量测定值,分为几个相等的区间作为横轴,并将各区间内所测定值依所出现的次数累积而成的面积,用柱子排起来的图形,也叫做柱状图。
-
You rap, you know we are not so good at rapping, huh?
你唱吧,你也知道我们并不那么擅长说唱,对吧?