英语人>网络例句>牛顿的 相关的搜索结果
网络例句

牛顿的

与 牛顿的 相关的网络例句 [注:此内容来源于网络,仅供参考]

By reviewing of the existing algorithms in CGE model, such as Scarf fixed point method, Newton-Raphson method, Tatonnement method, Johanson-Euler method, projected Lagrange method, genetic algorithm and simulated annealing algorithm, this paper expound each algorithm's principle and main problems, pointed out their respective strengths and weaknesses, and finally made a detailed comparative analysis.

本文通过对现有的求解算法进行综述,包括传统的Scarf不动点算法、牛顿迭代法、Tatonnement算法、Johanson-Euler法、投影拉格朗日算法,以及近期兴起的遗传算法和模拟退火算法,扼要说明它们的求解原理及存在的问题,指出各自的优缺点并作了详尽的比较分析与探讨,对于致力于推进CGE建模与仿真求解技术瓶颈突破的研究者们具体重要的参考意义。

It is proved that the two-dimensional non-hydrostatic Boussinesq equations on the x ? z plane with the kinetic viscous term and the thermal dissipative term are unstable equations in the C 2 function class.2. If we replace the influence of the kinetic viscous term by Rayleigh friction and the thermal dissipative term by Newton cooling, the new generalized equations are stable equations in the C 1 function class. The construction of the solution space and the discriminating method for well-posedness of the problem of determining solution are given.

本文的主要结果如下:1证明了在y方向上均匀的带有运动粘性项以及热耗散项的两维非静力、Boussinesq近似的x-z面上两维旋转流体的控制方程组在C 2函数类中是一个不稳定的方程组。2如果以瑞利摩擦来代替粘性的影响,以牛顿冷却来代替热量的耗散,则所获得的一个新的方程组在C 1函数类中是一个稳定的方程组,给出了其解空间的构造和各种定解问题的适定性的判别方法。

The discrete velocity ordinate method in the kinetic theory of gases is developed and applied to discretize the correspo

借助非定常时间分裂法和无波动无自由参数的NND耗散格式,建立直接求解微观分子速度分布函数的有限差分数值格式;研究并发展可用于离散速度坐标点选取和离散速度空间宏观取矩的高斯─埃尔米特无穷积分方法、等均间隔的牛顿─柯斯复合积分法、以勒让德多项式的根为积分结点的高斯─勒让德数值积分法,并应用于不同马赫数绕流模拟;通过对不同流域一维激波管问题、二维圆柱绕流问题和三维球体绕流的计算研究,并将计算结果与其他途径得到的研究结果诸如DSMC模拟值、N-S解及有关实验数据进行比较分析,创建了一套能有效模拟稀薄流到连续流不同流域气体流动问题简化的统一数值算法研究框架

The contents of the abstract of the short Communication is:"The paper gives a complete differential partition to a Euclidean straight line with a fixed frame, and three axioms for the integral of infinitesimals indexed by real numbers; proves in standard mathematics there are positive infinitesimals outside of real number set; Gives cosmic, macro and micro counterexamples to two axioms in Jordan, Carathéodory, and Lebesgue measure theory; transforms Weierstrass limit into Huang limit, Cantor continuum into Huang continuum, and Newton-Leibniz formula into Huang formula."

这个短的发言的摘要的内容如下:"此文对一条确定了固定标架的欧几里德直线给出了完整的微分分拆,并对以实数为标号的无穷小的积分给出了三条公理;在标准数学中证明了在实数集合之外存在正的无穷小;对若当,卡拉特欧多里和勒贝格测度论中的两条公理给出了宇观的,宏观的和微观的反例;将外尔斯特拉斯极限改进为黄氏极限,将康托连续统改进为黄氏连续统,和将牛顿-莱布尼茨公式改进为黄氏公式。"

First by testing the practical multilayer insulation in a cryogenic tanker, which is the carilometer in my paper,some affecting factors on multilayer insulation are analysed, then by using the low-temperature and vacuum environment caused by multilayer insulation, the effective thermal conductivity of multiple fiber paper with 5 layers is tested.Through Newton interativemethod,an empirical formula is deduced to computer the thermal conductivity of fiber paper,The errors between experimental thermal conductivity and the calculated conductivity by empirical formula are below10%,so the formula of fiber conductivity can be applied to practical enginnering.

为探索改善工程应用中高真空多层绝热层绝热性能的方法,本文实验研究中首先测量了包扎在实际低温储罐上不同结构的高真空多层绝热层的绝热性能,并分析了环境温度、环境压力,层数、不同隔热材料的组合等因素对工程应用中的高真空多层材料绝热性能的影响;然后利用多层绝热层中的低温真空环境测量5层干法纸在不同温度区间内的表观导热系数,在有限实验数据的基础上用牛顿迭代数值拟和出计算5层干法纸表观导热系数的经验公式,对比经验公式计算值和实验测量值,发现二者的误差在10%以内,因此在工程应用中可用本文的经验公式计算干法纸在低温下的导热系数。

Firstly,using the method of concentrate mass this paper establish a non-linear dynamics model of a two-stage gear train with backlashe between the gear pair,and through analysed the dynamics model,the torsional motion differential equations are got , on this basis,then calculate the torsional motion differential equations using Runge—Kutta method ,and discuss how to influence the dynamics characteristic of system when these parameters chage such as mesh frequentcies、 stiffness of the intermediate shaft、the ration of mesh frequentcies.and discuss when the chaos will happen under the change of these parameters.

首先用集中质量法建立系统的含间隙的非线性动力学模型,并根据牛顿力学定理,得到系统的运动微分方程。然后对所建立的运动微分方程运用四阶变步长Runge—Kutta方法进行了求解,并对计算结果进行分析,研究了齿轮啮合频率、中间联接轴的刚度,一、二级齿轮的啮合频率比等参数变化时,对系统非线性动力学特性的影响规律,并讨论了当参数如何变化时会导致系统的混沌响应的出现。

Aimed at the problem of choosing the initial value when the Newton method is used to compute the controlling unstable equilibrium point, a practical and rigorous solving scheme was presented: by identifying the controlling load bus of the given fault, and using the Thevenin equivalent circuit to represent the rest of the system at the state of the post disturbance stable equilibrium point, using the steady equivalent circuit to represent the induction motor in composite load, and then using the torque characteristics of induction motor, a point near the CUEP is gained to be the initial value. The second order normal forms was used to approximate the stable manifold of CUEP, and the local approximating boundary of the region of attraction of the post disturbance stable equilibrium point was gained. Then just by simulating the state of the system at the fault clearing time, the transient voltage stability of the system could be determined.

针对采用牛顿法求取故障后系统主导不稳定平衡点(controlling unstable equilibrium point,CUEP)存在的初值选取难题,提出一种实用但不失严谨的解决方案:通过识别给定故障的主导负荷母线,对主导负荷母线以外系统由故障后稳定平衡点处的状态进行戴维南等值,对负荷中感应电动机部分采用其稳态等值电路,再由感应电动机的转矩特性求得CUEP附近的一个点作为近似的CUEP,以此为迭代初值可靠求得CUEP;采用二阶正规型来近似CUEP的稳定流形的方法求得近似的局部吸引域边界;由仿真得到故障清除时刻系统的状态并根据该状态是否位于吸引域内判断系统的暂态电压稳定性。

In the first chapter, the application background and the main algorithms of the complementarity problems is introduced. In Chapter 2, some basic definitions and theories of complementarity problems are introduced. The 3rd chapter is the most important part of this paper, in which a new class of smoothing Newton method is detailed, also the global and local superlinear convergence is established for the method. In the 4th chapter, we propose some numerical experiment, and the results show the effectiveness of the proposed algorithms.

全文共分为四章,各部分内容安排如下:第一章是绪论部分,介绍了互补问题的应用背景和近年来有关互补问题求解方法的研究成果;第二章介绍了与互补问题相关的一些定义以及相关的定理和推论;第三章是本文的重点,构造了求解互补问题的一类光滑牛顿法,从理论上证明了算法的全局收敛性和局部超线性收敛性;第四章是数值实验,通过数值试验的结果进一步证明了算法的可行性和有效性。

Flow disciplinarian of different PH indicator polymer solution and newtonianliquid in annulus line had been studied, and found speed distributing, vortex,streamline of annulus line, analytic flow field distributing in annulus and eccentricsituation and compared the results with prevenient schloar, some results different fromprevenient results are get, shch as the relation of average velocity and maxiumvelocity is not less with the viscosity exponent under the annular line, the fluid speedaffect the relation.

应用 PIV 分别研究了不同浓度的聚合物溶液以及牛顿流体在垂直环空管道中的流动规律,得到了环空管道中流体的速度分布情况、涡量情况、流线情况,分析了同心和偏心情况下环空管道内的流场分布规律,并与前人的计算结果进行了比较,得出了一些与以前不同的结论:同心情况下平均流速与最大流速的关系,并不是完全与粘性指数 n 值有关系,还与管道内流动的流动速度有关系,当速度较小时,两者的差别就小,速度大时,不符合这种规律。

With the guide of non-linear program theory, by using interpolative steps and inexact line search, an improved conjugate gradient method was found, by which the training rate of BP networks increases by tens or hundreds of times. Moreover, the improved method is effective to solve non-linear equations for which Newton's method does not converge owing to the problems of the quadratic derivative and inverse matrix.

通过大量的数值模拟试验发现,在非线性规划理论的指导下采用间插步骤和不精确的一维搜索技术改进的共轭梯度法,是基于梯度和共轭方向的连续搜索算法中最有效的算法,这种算法使BP网络的训练速度提高几十到几百倍,使BP网络的实际应用效果大为改善;而且这种算法对于用牛顿法由于求二阶导数和求逆矩阵等问题难于收敛的非线性方程组的求解也是很有效的。

第84/85页 首页 < ... 77 78 79 80 81 82 83 84 85 > 尾页
推荐网络例句

This one mode pays close attention to network credence foundation of the businessman very much.

这一模式非常关注商人的网络信用基础。

Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.

扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。

There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.

双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。