条件适定的问题
- 与 条件适定的问题 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.
文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按"序"最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。
-
This paper discusses the conditional stability for solving the inverse sideways heat conduction problem by the rapid decreasing properties of the mollification kernel function, and obtain its regularization solution and its error estimate by constructing a well-posed problem.
利用磨光核函数在无穷远处的急降性质研究了反问题的条件稳定性,构造了一个适定的问题来逼近原问题,从而获得反问题的正则化解及其误差估计。
-
The result showed that,if only the necessary but insufficient condition,the equilibrium condition ,was adopted to deal with the infinite uncertain boundary condition,the solution to the stress was non-unique due to the fact that the boundary problem here was a mal posed mathematic problem.
通过两个典型的半无限体实例,对水平表面作用无限均布压力下弹性地基的应力和位移解答进行研究,结果表明:对边界条件不明确的无限边界仅采用解答的必要非充分条件——平衡条件来等效处理,其应力解答不是唯一的,因为此时该边值问题不是一个适定的数学问题。
-
Then for an artificial given solenoidal vector field, the problem how to construct another solenoidal vector field to make its curl equal with the given field was discussed.
作为它的逆问题,对于任意给定的一个标量场和一个无散向量场,求解另一个向量场,使该向量场的散度和旋度分别等于两个给定场的问题,只有在适定的边界条件下才能得到确定的解。
-
First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.
文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按&序&最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。
- 推荐网络例句
-
They weren't aggressive, but I yelled and threw a rock in their direction to get them off the trail and away from me, just in case.
他们没有侵略性,但我大喊,并在他们的方向扔石头让他们过的线索,远离我,以防万一。
-
In slot 2 in your bag put wrapping paper, quantity does not matter in this case.
在你的书包里槽2把包装纸、数量无关紧要。
-
Store this product in a sealed, lightproof, dry and cool place.
密封,遮光,置阴凉干燥处。