条件方程
- 与 条件方程 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In this paper, a simple method of solving the stress-fluid coupling equation at certain boundary conditions is proposed based on the corresponding relation of the seepage equation of stress-fluid coupling and heat conduction equation and using the structural mechanical module and heat conduction module in the ANSYS software.
本文根据流固耦合方程和热传导方程的对应关系,找出了在一定边界条件下,可用ANSYS中的结构力学模块和热传导模块求解流固耦合方程的简便方法。
-
To be a contrast, Euler equations were solved in the same condition, and the numerical experiments demonstrated that for such strongly unsteady flows with a high Reynold number, the Euler solution is comparable to the N-S solution.
在同样计算条件下采用Euler方程进行对比性研究,数值实验发现对这类大雷诺数、强非定常性的问题,Euler方程和N-S方程得到的结果相差不大。
-
By changing differential equations into nonlinear integral equation,we study the existence of positive solution of a class of second order differential equations problems by the fixed point theorem of cone expansion and compression,and the fixed point index theorem,then we obtain two multiple positive .
通过将常微分方程转化为非线性积分方程,利用锥拉伸和锥压缩不动点定理和不动点指数讨论了一类二阶常微分方程的正解存在性问题,在一定条件下,得到了几个多重正解定理,同时证明了与此相关的主要引理
-
Based on the Biot s two-phase theory for fluid-saturated porous media, considering the inertia force of the solid and the liquid, and the coupling function between the solid and the liquid, and the compressibility of the liquid in allusion to the character of the nearly saturated soils. The dynamic governing differential equations are solved by Hankel transform. Then, considering the boundary condition, the dual integral equations of vertical vibration are established which are reduced to Fredholm integral equation of the second kind.
本文基于Biot两相介质动力固结理论,针对准饱和土地基的特点,考虑了流体的可压缩性,土体和流体的惯性及水土之间的耦合作用,运用Hankel变换技术求解动力控制方程,然后按混合边值条件建立起对偶积分方程,并将其化为易于数值计算的第二类Fredholm积分方程,分别研究了准饱和土半空间地基、上覆单相弹性层的准饱和土地基和准饱和粘弹性地基上刚性基础的竖向振动特性。
-
Using Biot's 2D elastodynamic theory solves the saturated soil equation. The Fredholm integral equation of the second kind can be built by using the fundamental solution of circular load, the compatibility condition and superposition method. The Fredholm integral equation of the second kind of pile groups can be solved by using numerical method. The numerical solutions of pile groups axial forces, pore pressures under vertical harmonic loading and shear forces, moments and pore pressures under horizontal harmonic loading can be obtained.
采用Biot提出的三维波动原理,利用圆形简谐载荷作用下的Biot固结方程的基本解和桩土之间的变形协调条件,并采用叠加原理得到饱和土中群桩的第二类Fredholm积分方程,应用数值法求解群桩的第二类Fredholm积分方程,得到在垂直简谐载荷作用下群桩的轴力、孔压随桩身变化的数值结果以及在水平简谐载荷作用下群桩的剪力、弯矩和孔压随桩身变化的数值结果。
-
Further, with the help of Riccati equations, an infinite number of conservation laws for the solton hierarchy are deduced. For the sake of simplicity, taking the general TD hierarchy as an illustrative example, we prove that its 2×2 Lenard pair of operators forms a Hamiltonian pair. Thus the isospectral evolution TD hierarchy is the general Hamiltonian system and possesses the Bi-Hamiltonian structures and Multi-Hamiltonian structures. By using the method of derivation of functional under some constraint condition, a complete one-to-one correspondence between the Hamiltonian functions of the hierarchy and its conservation density functions can be built. These results can also be applied to the isospectral evolution soliton hierarchy of this paper. Finally, there's a gauge transformation between the spectral problem of this paper and the AKNS system. Moreover, the potentials in these spectral problems satisfy the general Miura transformation, the corresponding relationship between the two soliton hierarchies is also given.
进一步本文还通过特征函数的组合关系所满足的Riccati方程,得到了该等谱方程族的无穷多个守恒律;为简便起见,本文以广义TD族为例,由它的2×2 Lenard算子对的性质证明了此算子对为Hamilton算子对,这说明广义TD族是广义Hamilton系统且具有Bi-Hamilton结构和Multi-Hamilton结构;进而利用它的依赖于谱参数的一般守恒密度的积分在约束条件下求泛函导数的方法,得到了广义TD族的Hamilton函数与守恒密度之间的对应关系,这些性质对于由本文提出的2×2谱问题所导出的等谱孤子族仍成立;另外此谱问题与AKNS系统存在着规范变换,位势之间有广义Miura变换,而孤子方程之间也满足一定的等价关系。
-
On this base,we discuss a class of singular integral equation with Hilbert kernel having solutions with singularity of order one, the solvable conditions for general equation are given and solutions for responding characteristic eq...
在以上工作的基础之上,我们提出了一类不同于文献[13]的解具一阶奇性的Hilbert核奇异积分方程,给出了完全方程的Noether定理和特征方程的解和可解条件。
-
Based on the hydrokinetics study of jigging process, the free vibration equations of ideal fluid and actual flow vibration equations have been established. These equations are the theoretical foundation to set the operation parameters and air pressure of the jig. The similar criteria and their related equation of model jig have been deducted by actual flow vibration equation. These similar criteria can be used for parameter transformation between model jig and industrial jig. One set of single cell model jig with measuring system has been constructed in laboratory.
本文通过对跳汰过程的流体动力学研究,建立了跳汰机中理想流体的自由振动方程和实际水流的振动方程,为跳汰机工作制度及风源风压的确定提供了理论依据;利用跳汰机中实际水流的振动方程推导出了跳汰机模型试验的相似准数,建立了模化准则关系式,为工业跳汰机与实验室跳汰机之间的参数转换提供了理论依据;并设计建造了一套实验室单槽模型跳汰机及其实验检测系统,为深入开展跳汰理论的研究创造了条件。
-
At first, the governing differential equations are solved by Fourier transform, then, under consideration of the mixed boundary value condition, a pair of dual integral equations about the vertical vibration are listed which are converted to linear algebra equations by the Jacobi orthogonal polynomial and solved by numerical procedures. Consequently, the dynamic compliance coefficient Cv versus the dimensionless frequency is derived, and the program is compiled.
首先,采用Fourier积分变换解析求解了Biot方程,得到了该动力控制方程在Fourier变换域上的一组通解,然后由混合边值条件建立了地基上基础竖向振动的对偶积分方程,并应用Jacobi正交多项式将其转化为一组线性代数方程组,通过求解得到了不同无量纲频率下基础振动的动力柔度系数Cv,编制了相应的计算程序。
-
Rumjantsev used Hamilton's principle with Lagrange's multipliers to generate the dynamical equations of a rigid-fluid coupled system in 1954 and the dynamical equations and their dynamical boundary conditions of a fluid-elastic coupled system in 1969, where the fluid is incompressible and inviscid. In 1990, Liu used Jourdain's principle with Lagrange's multipliers to generate the dynamical equations of a rigidfluid coupled system, where the fluid is incompressible and viscid.
Rumjantsev利用带Lagrange乘子Hamilton变分原理于1954年建立了刚—流耦合系统的动力方程,于1969年建立了流—弹耦合系统的动力方程及其动力边界条件,其中所考虑的流体是不可压无粘液体;Liu利用带Lagrange乘子Jourdain变分原理于1990年建立了刚—流耦合系统的动力方程,其中所考虑的流体是不可压粘性液体。
- 推荐网络例句
-
The split between the two groups can hardly be papered over.
这两个团体间的分歧难以掩饰。
-
This approach not only encourages a greater number of responses, but minimizes the likelihood of stale groupthink.
这种做法不仅鼓励了更多的反应,而且减少跟风的可能性。
-
The new PS20 solar power tower collected sunlight through mirrors known as "heliostats" to produce steam that is converted into electricity by a turbine in Sanlucar la Mayor, Spain, Wednesday.
聚光:照片上是建在西班牙桑路卡拉马尤城的一座新型PS20塔式太阳能电站。被称为&日光反射装置&的镜子将太阳光反射到主塔,然后用聚集的热量产生蒸汽进而通过涡轮机转化为电力