李代数
- 与 李代数 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In section 3 ,we will introduce bilinear form B on Lie colour algebra L. is called quadratic if B is color symmetric .non-degenerate and invariant .In this case ,B is called an invariant scalar product on L .
第三部分介绍了具有双线性型B的李color代数L,如果B是color对称的,非退化的和color不变的,则称是二次李color代数,B则称为不变数量积,给出了理想非退化的定义。
-
First, we give the definition of Lie color superalgebras using the symmetric bicharacter on a finite commutative group, and also we introduce some fundamental notions about Lie color superalgebras.
首先根据有限交换群上对称双特征标的概念,给出着色李超代数的定义,并介绍关于着色李超代数的一些基本概念与基础知识。
-
At last we introduce the most important theory in this thesis which is the uniqueness of decomposition . Complete Lie colour algebra of any finite dimension can be decomposed to direct sum of simply complete ideas .And the decomposition is unique except the order of the ideas .
最后给出了本文最重要的一个定理——完备李color代数的分解唯一性定理,指出有限维完备李color代数可以分解为单完备理想的直和,而且除这些单完备理想的次序外,这种分解是唯一的。
-
Finally, after defining an evaluation module of the corresponding Loop superalgebra (Section 4), two major results of the paper -Theorem 4.land Theorem 4.2 are proved: Theorem 4.1 reduces the irreducibility of the tensor product of finitely many evaluation modules to the irreducibility of the tensor product of finitely many irreducible modules of a nilpotent Lie superalgebra; Theorem 4.2 gives a criterion for the tensor product of such modules to be irreducible.
第4节在定义了相应的Loop超代数的赋值模之后,证明了本文的两个主要结论:定理4.1和定理4.2。定理4.1将有限多个赋值模其张量积的不可约性归结为一幂零李超代数的限多个不可约模其张量积的不可约性;定理4.2利用不可约指标给出了一幂零李超代数的限多个不可约模其张量积仍不可约的判别准则。
-
This paper mainly consider some basic theory of Frattini p-subalgebra of restricted Lie color algebra from four aspects.
首先,我们给出了关于限制李color代数的p-子代数,p-理想,p-幂零等几个基本定义,然后给出了几个重要定理,这是研究限制李color代数Frattini理论的重要依据。
-
And then the definition of simply complete Lie colour algebra and L self-homomorphism are given .A Lie colour algebra is simply complete if and only if it can not be decomposed .
然后给出了单完备李color代数的定义,并给出了一个李color代数是单完备的充要条件,即是不可分解的,同时引入了L的L自同态的定义。
-
The quantum deformation of a Lie algebra is obtained by adding one parameter q,which is reduced to the original Lie algebra when taking the limit q→1;some properties of the original Lie algebra remain.
在Hopf代数或量子群理论中,构造李双代数的量子化是产生新的量子群的一个十分重要方法,研究李双代数的重要目的之一就是对其量子化。
-
For the regular curves, we find two Killing fields for the purpose of integrating the structural equations of the p-elastic curves and express the p-elastica by quadratures in a system of cylind...
对于正则曲线的情形,我们发现了两个用于求解p-弹性曲线的结构方程的Killing向量场并用积分将p-弹性曲线在一个柱面坐标系中表示出来,而对仿射星形曲线的情形,我们用积分方法解出了欧拉-拉格朗日方程,利用Killing向量场及线性李代数s1(2,R)、s1(3,R)和s1(4,R)的分类将高阶结构方程降为一阶线性方程,因此我们用积分完全解出了中心仿射p-弹性曲线。
-
For the regular curves, we find two Killing fields for the purpose of integrating the structural equations of the p-elastic curves and express the p-elastica by quadratures in a system of cy...
对于正则曲线的情形,我们发现了两个用于求解p-弹性曲线的结构方程的Killing向量场并用积分将p-弹性曲线在一个柱面坐标系中表示出来,而对仿射星形曲线的情形,我们用积分方法解出了欧拉-拉格朗日方程,利用Killing向量场及线性李代数s1(2,R)、s1(3,R)和s1(4,R)的分类将高阶结构方程降为一阶线性方程,因此我们用积分完全解出了中心仿射p-弹性曲线。
-
For the regular curves, we find two Killing fields for the purpose of integrating the structural equations of the p-elastic curves and express the p-elastica by quadratures in a syste...
对于正则曲线的情形,我们发现了两个用于求解p-弹性曲线的结构方程的Killing向量场并用积分将p-弹性曲线在一个柱面坐标系中表示出来,而对仿射星形曲线的情形,我们用积分方法解出了欧拉-拉格朗日方程,利用Killing向量场及线性李代数s1(2,R)、s1(3,R)和s1(4,R)的分类将高阶结构方程降为一阶线性方程,因此我们用积分完全解出了中心仿射p-弹性曲线。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。