曲线的曲率
- 与 曲线的曲率 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Consider the circle that is tangent to the curve at and has the same curvature there. Its center will lie on the concave side of the curve. This circle is called the circle of curvature. Its radius is the radius of curvature, and
在点处的曲线的法线上,在凹的一侧取一点,使得,以为圆心,半径为的圆叫做曲线在点处的曲率圆,曲率圆的圆心叫做曲线在点处的曲率中心,曲率圆的半径叫做曲线在点处的曲率半径。
-
First, the paper introduces the moving coordinate system based on the curve tangent vector and the curvature component vectors. Next, the total curvature vector is composed and the osculating plane determined in the moving coordinate system. The curve bending is then calculated and the recursion analysis made on the osculating plane.
鉴于空间曲线上曲率采集面的变化,引入了由曲线切向量和曲率分量决定的运动坐标系,接着在运动坐标系中合成曲率矢量,确定密切平面,然后在密切平面中对曲线进行弯曲计算和运动坐标系的变换分析,并对相关公式进行了推导。
-
The equations of the curvature, curvature radius, main curvature and main curvature radius on hypocycloid抯 and epicycloid抯 theoretical tooth shape and practical tooth profile are deduced respectively.
根据微分几何知识,分别推导出内、外摆线理论齿形和实际齿廓的曲率、曲率半径、主曲率及主曲率半径的方程式,并绘制了内、外摆线理论齿形和实际齿廓曲线及理论齿形的曲率半径变化曲线。
-
Secondly, in this part, we will introduce the notation of average geodesic curvature for curves in the hyperbolic plane, and investigate the relationship between the embeddedness of the curve and its average geodesic curvature. Finally, we will employ the Minkowskis support function to construct a new kind of non-circular smooth constant breadth curves in order to attack some open problems on the constant width curves for example, whether there is a non-circular polynomial curve of constant width, etc.
其次,对双曲平面上的曲线引入平均测地曲率的概念,并讨论双曲平面上凸曲线的嵌入性与它的平均测地曲率之间的关系,其目的是为了将双曲平面上曲线的性质与欧氏平面中曲线的性质作一些对比;最后,我们利用Minkowski支撑函数构造了一类新的非圆的光滑常宽曲线,其目的是想回答有关常宽曲线的一些未解决问题如是否存在非圆的多项式常宽曲线?
-
Here, we will give an independent proof of the existence for inequality (2.1.3), and by the way, give an estimate on the width of the bi-enclosing annulus of closed convex curves in the plane. Secondly, in this part, we will introduce the notation of average geodesic curvature for curves in the hyperbolic plane, and investigate the relationship between the embeddedness of the curve and its average geodesic curvature.
其次,对双曲平面上的曲线引入平均测地曲率的概念,并讨论双曲平面上凸曲线的嵌入性与它的平均测地曲率之间的关系,其目的是为了将双曲平(来源:ABC论84文网www.abclunwen.com)面上曲线的性质与欧氏平面中曲线的性质作一些对比;最后,我们利用Minkowski支撑函数构造了一类新的非圆的光滑常宽曲线,其目的是想回答有关常宽曲线的一些未解决问题如是否存在非圆的多项式常宽曲线?
-
For the application of Mathematica in the differential geometry,this paper introduces how to processe the curve curvature and the torsion questions,the graphic expression of the curvature and the torsions,and draw curves by the curvature and the torsions. Curvature ; torsion ; solution curve ; osculating plane ; natural parameter ; natural equation
利用Mathematica,只要输入有关系统命令就可以得到期望的结果。1曲率和挠率及其图形意义假设R3上的曲线一般参数表示为r=r它的曲率和挠率计算公式是:κ=‖r′×r"‖‖r′‖3τ=‖r′×r‖我们知道,空间曲线r=r在一点(s=s0)邻近的近似方程为ξ=sη=120κs2ζ=160κ0τs3通过近似方程可以确定曲线在其基本三棱形的三个平面(即密切平面,法平面,从切平面)上的投
-
Then, based on the mean curvature, Gaussian curvature and the function of principal curvature, the minimal loci of the principal normal surfaces of curves, the curves with constant Gaussian curvature and the two curves of which the ratio of their functions is constant can all be obtained, as well as the properties of geodesic curve and lumbar curve.
再根据平均曲率、高斯曲率及主曲率函数,能得到曲线的主法线曲面的极小轨迹、常高斯曲率曲线及两个主曲率函数之比为常数的曲线。还给出曲面上测地线和腰曲线的性质。
-
As an example to cubic trigonometric polynomial Bézier,the characters of trigonometric polynomial Bézier curve is analyzed,and deduced that cubic trigonometric polynomial Bézier curve is more smooth than cubic polynomial Bézier curve.
Bézier曲线是计算机辅助几何设计中的一类重要曲线,文献[1]介绍了三次Bézier曲线插值,文献[2]介绍了三次Bézier曲线的保凸插值,但难以解决一端曲率为0,另一端曲率比较大的插值问题。
-
Theory; the spatial meshing theory includes comparative motion, comparative differential and conjugative curved surface; and the application of meshing theory includes gear drive and worm drive. The spatial meshing theory is the main part of the course.
课程的重点讲解内容有曲线的参数方程、切线、法面、弧长、曲率、空间曲线的基本公式、挠率及平面曲线的基本公式等;曲面第一和第二基本公式,法曲率、主方向和主曲率、欧拉公式、短程挠率、欧拉公式和贝特朗公式推广、相对法曲率和相对短程挠率等;刚体的绝对和相对运动速度、相对微分和绝对微分、相对速度和相对微分、轨迹曲面的法曲率和短程挠率等;空间共轭曲面的啮合条件、诱导法曲率、两类界限点、等距共轭曲面、空间啮合的二次接触原理等;蜗杆传动的数学模型建立及啮合特性分析方法等。
-
For the application of Mathematica in the differential geometry,this paper introduces how to processe the curve curvature and the torsion questions,the graphic expression of the curvature and the torsions,and draw curves by the curvature and the torsions. Curvature ; torsion ; solution curve ; osculating plane ; natural parameter ; natural equation
利用Mathematica,只要输入有关系统命令就可以得到期望的结果。1曲率和挠率及其图形意义假设R3上的曲线一般参数表示为r=r它的曲率和挠率计算公式是:κ=‖r′×r&‖‖r′‖3τ=‖r′×r‖我们知道,空间曲线r=r在一点(s=s0)邻近的近似方程为ξ=sη=120κs2ζ=160κ0τs3通过近似方程可以确定曲线在其基本三棱形的三个平面(即密切平面,法平面,从切平面)上的投
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。