收敛性的
- 与 收敛性的 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Our results show that not only the club convergence has been obviously exhibited, that is, the output per capita congregates within the east, middle and west districts respectively; but also the conditional convergence has been identified, that is, given the same level of human capital, market ope...
本文认为中国地区间的经济增长,不仅存在着显著的"俱乐部收敛"特征,即按东中西划分的区域内部人均产出具有明显的聚集现象;而且存在着条件收敛的特征,即在具有相同的人力资本、市场开放度等结构特征的经济地区间存在着一定的增长收敛趋势。本文实证分析的结果还显示,各地区间工业化水平的差异和产业结构的变动对增长收敛性构成显著的影响。
-
Under some reasonable conditions, it is proved that the algorithm is locally and globally convergent.
在合适的条件下,证明了算法的全局收敛性和局部二次收敛性。
-
Under appropriate conditions, we obtain the global and quadratic convergence of the proposed method.
在适当的条件下,我们证明了算法的全局收敛性和二阶收敛性。
-
Under mild conditions, we prove that our algorithm has the properties of global convergence and quadratic convergence.
在适当的条件下,证明了算法的全局收敛性和二次收敛性。
-
At the beginning of this paper, we briefly introduced the fundamental knowledge of the Newton iterative methods , and the local convergence theorem which extended the classical Newton method, because of the local convergence, the theorem had its certain restrict. Large-scale convergence theorem was proved under the condition that matrix M is irreducible diagonally dominant by Newton's method with line search.At the last part of this paper, we present the method for solving linear complementarity problems arising from journal bearings.
本文首先介绍了Newton型迭代法的基础知识,然后着重介绍了B-可微方程的Newton法,给出B-可微法的局部收敛结论,推广了古典的Newton法,但由于收敛的局部性,该算法仍有一定的不足之处;文章在证明大范围收敛定理时,假设M是不可约对角优势矩阵,采用一维Newton寻查的方法,保证算法的收敛性。
-
The requirements of efficiency and global-optimization can be met at the same time. Based on the situation of time varying of parameters of system, before entering the inference machine, the fuzzy control rules is learned and tested online by a special designed "judger", the excellent performances of fuzzy control rules which use online control is ensured. Fuzzy cerebellum model articulation control CMAC is used to control the semi-active suspension system for the first time. The convergence of this control algorithm and the convergent range is presented.
并根据实际系统参数时变的特点,用"判别器"对即将进入推理机的模糊规则进行了在线学习和测试,保证了用于实时控制的模糊规则的优良;首次应用模糊小脑模型神经网络控制器对系统实施了控制,并证明了这种控制算法的收敛性,得出了收敛范围;仿真和试验结果表明,GASAF和 FCMAC这两种智能控制算法对车辆的平顺性都有较大的改善,实时性较强。
-
In Chapter 4, using the formula A_k(2) given by Wei, we propose a new A_k(2)-SQP method, which develepments the using of the quasi-Newton formula BFGS, and combines with SQP method to solve constrained optimization problems, the corresponding algorithm possesses global convergence and supei linear convergence property.
第四章,利用韦提出的A_κ(2)公式,我们给出了一种A_κ(2)-SQP方法,该方法把拟牛顿修正公式BFGS进行了推广,并结合SQP方法去解约束优化问题,相应的算法具有全局收敛性和超线性收敛性。
-
By using the Tadmor's convergence criteria for the difference approximation of the hyperbolic conservative e2 quation and introducing some adjusting parameter in the nonvanishing viscosity , some convergence properties are obtained.
Descripción :摘要:应用Tadmor 的关于双曲型守恒方程式差分逼近的收敛性判别法,对于若干差分逼近式,引入一些参数,只要在上机时适当调整此参数值,即可得到其收敛性。
-
This paper presents a multigrid parallel algorithm of one dimensional virtual boundary ransack forecast, and discusses its convergence.
对网格方程组作多重网格区域分裂并行计算,虚拟边界预报提出一维搜索算法,并讨论相应的收敛性;通过 GS迭代的性质,构造区间压缩算法,证明了其收敛性。
-
In Chapter 2, combining two types of the preconvex part of modified Broydens family with Armijo line search, we get two algorithms for solving unconstrained optimization problems, and prove these algorithms are global and superlinear convergence under some suitable conditions.
第二章,将两种修改Broyden非凸族与Armijo线搜索相结合,得到了求解无约束最优化问题两种算法,在适当的条件下,证明了这些算法具有全局收敛性和超线性收敛性。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。