振动性的
- 与 振动性的 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In the second section,we discuss the asymptotic and oscillatory behavior for aclass of first-order mixed neutral differential equations.
在第二节,讨论了一类一阶混合中立型微分方程的渐近性与振动性。
-
Firstly, The sufficient con-ditions of the existence and uniquity of the positive equlibria by applying functional derivative isobtained; Secondly, the global attractability of the positive equlibria is investigated by charateristicroots theory and oscillation theory; Thirdly, regarding the delay as a parameter, conditions of theexistence of Hopf bifurcation and the peridic solution, furthermore, the form of the approximateperidic solution are obtained; Finally, Some specific examples are given and the solution diagrameappears by Matlab.
首先利用导数性质,得到了该模型正平衡态存在惟一性的充分条件;其次,利用特征值和振动性理论得到了该模型正平衡态全局渐近稳定性充分条件;然后,应用Hopf分支理论证明了该模型Hopf分支及近似分支周期解的存在性,并给出了周期解的近似表达式;最后,借助于MATLAB数学软件,举例并绘出了模型数值解的拟合图象,验证了文中定理条件的可行性。
-
Some sufficient conditions for oscillation of neutral differential equation with positive and negative coefficients are obtained.
利用数学分析和不动点原理,研究了具有正负系数的中立型时滞微分方程的振动性,得到了方程所有解振动的充分条件。
-
In this paper, we first study the existence of positive solution and oscillation of neutral differential equation with...
第一章多滞量中立型时滞微分系统的正解存在性及振动性在这一章中,我们讨论中立型时滞微分方程
-
Through creating a differential equation whose oscillation is equivalent to the impulsive equation, or considering the relation between impulsive points and delay, we get some sufficient conditions for the oscillation of the equation.
第二章讨论了二阶自共轭脉冲微分方程,通过建立与之振动性等价的微分方程,或考虑脉冲点与时滞间的关系,我们得出方程振动的一些充分条件。
-
Aimed at the mathematic problem in the model of the pendulum oscillation,the paper introduces the study on the existence of odd-harmonic solutions to second order semi-linear differential equation which describes the model of the pendulum oscillation by using upper and lower solution method monotone iterative technique and the Schauder fixed point theorem respectively.
针对摆型振动模型中的数学问题,分别采用上下解方法、单调迭代法及Schauder不动点定理研究了摆型振动模型的二阶半线性微分方程奇调和解的存在性。
-
The nuclear of the method is the newly developed HHT for nonstationary and nonlinear time series analysis, which consists of the Empirical Mode Decomposition and Hilbert Spectral Analysis.
该方法对桥梁结构健康性的最终判断依据是基于数据的非线性特征、自由振动和强迫振动的频率对比、桥梁对轻荷载及重荷载的响应。
-
In this dissertation, periodic impact motions in vibro-impact systems are studied, and the existence and stability of superharmonic periodic impact motions are obtained. The critical bifurcation parameter intervals of superharmonic periodic impact motions are deduced, and numerical simulations are used to verify the results.
中文题名碰振或约束系统的全局分析及稳定性研究副题名外文题名 Studies on global analysis and stability in vibro-impact or constraint systems 论文作者张彦梅导师陆启韶教授学科专业一般力学与力学基础研究领域\研究方向学位级别博士学位授予单位北京航空航天大学学位授予日期2002 论文页码总数95页关键词碰振系统转子系统多体系统碰撞振动馆藏号BSLW /2003 /O322 /1 本论文讨论了碰撞振动系统的周期碰撞运动,得到了超谐周期碰撞运动的存在性和稳定性,推导出亚谐周期运动的临界分岔参数区间,并利用数值模拟进行验证。
-
In order to remove the unsteady run for moter caused by its vibra ation,applying the ER damping technique,the author solved the problem that the amplitudes of the motor viberaton would diverge because of the negative damp during its travel,so as to improve the steadiness for the motor to run.
为了解决摩托车振动导致的行驶不稳定,应用电流变减振技术,解决在行进过程中出现的等效阻尼为负值,致使振动振幅发散的问题,改善了摩托车在行驶时的平稳性
-
By comparing the method with the traditional strength training, the authors found theordinary speed strength and rapid speed strength of the flexors and extensors of the lower limbs of theexperiment group had been raised significantly.
通过对振动刺激力量法和传统力量训练方法的比较研究,发现附加全身振动刺激的实验组下肢三大关节屈伸肌肌群的一般和快速力量在实验后明显提高,其增长幅度明显大于对照组,组间比较具有显著性差异。
- 推荐网络例句
-
With Death guitarist Schuldiner adopting vocal duties, the band made a major impact on the scene.
随着死亡的吉他手Schuldiner接受主唱的职务,乐队在现实中树立了重要的影响。
-
But he could still end up breakfasting on Swiss-government issue muesli because all six are accused of nicking around 45 million pounds they should have paid to FIFA.
不过他最后仍有可能沦为瑞士政府&议事餐桌&上的一道早餐,因为这所有六个人都被指控把本应支付给国际足联的大约4500万英镑骗了个精光。
-
Closes the eye, the deep breathing, all no longer are the dreams as if......
关闭眼睛,深呼吸,一切不再是梦想,犹如。。。。。。