英语人>网络例句>拓扑同胚 相关的搜索结果
网络例句

拓扑同胚

与 拓扑同胚 相关的网络例句 [注:此内容来源于网络,仅供参考]

It's really the natural setting for algebraic topology because the traditional algebraic invariants (fundamental group, homolog group,etc.) arc isomorphic not only for homeomorphic spaces but for spaces of the same homotopy type. Homtopy epimorphisms and monomorphisms are special morphisms in the category of topological spaces and the initial research of them may be traceable to S.T.

同伦论的本质是利用比同胚关系更广泛的等价关系—同伦关系来对拓扑空间进行研究,这也是代数拓扑研究中一种自然的考虑,因为传统的代数不变量不仅在同胚的空间之间保持同构,而且在具有相同伦型的空间之间也保持同构。

Furthermore,it shows that if E is a barrelled space with continuousdual 〓,then 〓 contains no copy of 〓 if and only if each〓 is compact operator.

据此证明了若E是桶型空间,那么〓〓不拓扑同胚地包含〓的充要条件是每个〓都是紧算子。

Next,it proves that if E is a barrelled space and F〓 is a locally convex space,Kis all the compact operators of L,then the weak operator topology and the uniformly operator topology have the same sub-series convergence series in Kif and only if 〓 contains no copyof 〓.

其次又得到,若E是桶型空间,〓是局部凸空间,那么紧算子空间K中弱算子拓扑与一致算子拓扑具有相同子级数收敛的充要条件是〓不拓扑同胚地包含〓。

In chapter 3,we prove that a complete noncompact n-dimensional Riemannian manifold M whose Ricci curvature Ric_M ≥(n- 1) has finite topological type or diffeomorphic to R~n if its Excess function has some upper bound at a point.

第三章,我们证明了对于Ricci曲率Ric_M≥-(n-1)的完备非紧n维Riemann流形M,若它的共轭半径有正的下界且共轭半径的某个函数为M在某一点的Excess的上界时,它就有有限拓扑型或者微分同胚于n维欧几里德空间。

We give a sufficient condition for the self-similar set in the plane which is homeomorphic to the unit disk.

最后一章讨论自相似集的拓扑结构,给出了平面上的自相似集同胚于单位圆盘的充分条件。

We prove in this paper that topological entropy is zero, in systems of equivariant mapping, that systems of compression mapping, and systems of the homeomorphism of unit circle onto itself, while the toppological entropy is positive, that extensible mapping in the compact toppological metric space.

证明了在一般的紧致度量空间上,等距映射的系统,压缩映射的系统,单位圆上的自同胚映射的系统等的拓扑熵都为零,而可扩映射的系统有正的拓扑熵。

In the first part, the concepts of the completely normal spaces and strong completely normal spaces in L-topological spaces are defined, which are the generalization of the completely normal spaces in general topological spaces. They are some good properties such as hereditary, weakly homeomorphism invariant properties, good L-extension, but they arent producible in general.

第一部分的主要内容如下:第一部分这一部分是将一般拓扑学的完全正规分离性的概念推广到了L-拓扑空间,给出了L-拓扑空间的完全正规分离性和强完全正规分离性的定义并讨论了它们的若干性质,比如,它们都是可遗传的,弱同胚不变的,"Lowen意义下好的推广"等。

A simple polynomial approach for A Class of nonlinear system modeling is presented. By this, the input-output data are firstly changed into [0, 1] by using topological homeomorphism conversion; then an initial polynomial model is selected. The parameters of polynomial model are estimated by using recursion least squares method. A final polynomial model is obtained by repeatedly estimating parameter and eliminating redundant terms.

给出一类非线性系统的实现简单的多项式逼近的建模方法,在此方法中,将输入输出数据通过拓扑同胚变换,变换到[0,1]区间内,用多项式逼近的方法进行建模,对初始给定的多项式模型,通过反复的参数辨识、去除模型中的冗余项,得到非线性系统的多项式逼近模型,再利用拓扑反变换,将数据还原回原始数据区间。

In the last chapter, on the basis of theories in paper [4, 5], the notions of strong mixing, weak mixing, generator and expansion of the variable-parametric dynamical system are introduced, it turns out that in variable-parametric dynamical system strong mixing implies weak mixing and then implies transitivity; it is proved that if and both are variable-parametric dynamical system, F conjugates with G , the members of F are communicate with each other and the members of G are also communicate with each other, what's more, they are both homeomorphism, then F is strong mixing implies G has the same properties; futhermore, we prove that F is strong mixing implies F Devaney chaos in the sense of modification in variable-parametric dynamical system and that F Devaney chaos in the sense of modification if and only if G Devaney chaos in the sense of modification when semi-conjugate with and they both are communicate and homeomorphism; at last, we illustrate that F has generator if and only if it has weak generator, and we also prove that if F is expansion, then F has generator.

在第三章中,我们在文[4,5]的基础上,提出了变参数动力系统拓扑强混合、拓扑弱混合以及变参数动力系统的生成子、扩张的概念;证明了变参数动力系统拓扑强混合蕴含拓扑弱混合,进而蕴含拓扑传递;证明了:如果,为两个变参数动力系统,F与G拓扑半共轭,且F两两可交换,G两两可交换,它们均为同胚映射,那么F拓扑强混合,则G也有同样的性质;本章还证明了变参数动力系统拓扑强混合蕴含F在修改的意义下Devaney混沌;在此基础上得出了:如果变参数动力系统与变参数动力系统拓扑半共轭,它们都两两可交换,并且它们均为同胚映射,那么F在修改的意义下Devaney混沌当且仅当G在修改的意义下Devaney混沌;得出了F有生成子当且仅当F有弱生成子;如果F是扩张的,则F有生成子。

推荐网络例句

Lugalbanda was a god and shepherd king of Uruk where he was worshipped for over a thousand years.

Lugalbanda 是神和被崇拜了一千年多 Uruk古埃及喜克索王朝国王。

I am coming just now,' and went on perfuming himself with Hunut, then he came and sat.

我来只是现在,'歼灭战perfuming自己与胡努特,那麼,他来到和SAT 。

The shamrock is the symbol of Ireland and of St.

三叶草是爱尔兰和圣特里克节的标志同时它的寓意是带来幸运。3片心形叶子围绕着一根断茎,深绿色。