拉格朗日函数
- 与 拉格朗日函数 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
As functions of the function of mathematics, the Key theorem of calculus of variations is Euler LaGrange, it can be used to the pan-seeking function of the maximum and minimum of mathematical.
变分法是处理函数的函数的数学领域,关键定理是欧拉-拉格朗日方程,用来求的泛函数的极大值和极小值的数学方法。
-
The one-dimensional wave model based on the D'Alembert formula and ELMFS is proposed in this dissertation.
所以达朗伯特格式在本文中被用来避免直接处理脉冲函数,并结合尤拉-拉格朗日基本解法发展出一维波动模型。
-
Through the polynomial approximation to function, resulting in more than a Peano-type and Lagrange remainder of the Taylor formula, using elementary functions Maclaurin expansions to address the limits and the approximate evaluation of the problem.
通过多项式来逼近函数,从而得到带有佩亚诺型余项和拉格朗日余项的泰勒公式,利用初等函数的麦克劳林展开式来解决极限及近似求值的问题。
-
This paper introduce Lagrange multiplier method and its expandings first, and show the necessary condition of Multivariate function's extreme value, and use it to solve the Multivariate function's extreme value problem.
本文首先介绍了拉格朗日乘数法及其拓展,给出了多元函数条件极值的必要条件,并利用它求解了多元函数的条件极值问题。
-
On the basis of analyzing detailedly the correlative conclusions of the extreme value problem of two variable Function , this paper extends the essential condition and sufficient condition to multi-variable function by using the Taylor Formula 、Quadratic Form 、Hesse Matrix and so on,and gives a method to judge the extreme value of point whose vice-derivative doesn't exist by utilizing Lagranges theorem ,so that compensates for the blank above ,which turns idea that solve the extreme value of multi-variable function problem one by one into realities.
摘要本文在对二元函数极值问题的相关结论进行分析的基础上,用泰勒公式、二次型、海赛矩阵作为工具,将二元函数极值的必要条件和充分条件推广到多元函数的情形,而且还利用拉格朗日中值定理找到了一个判别不可导点处极值的方法,从而弥补了多元函数不可导点处极值无法判断的空缺。因而,使得用穷举判断的方法来解决多元函数的极值问题这一思路成为现实。
-
A combinatorial identity is obtained:=:~z 2r扟32-rn-iJ As main result of this paper, in section two, the convolution梩ype identities emerge from our discussion about Lagrange formula whom in author 憇 view can be taken as the inherent characteristic of Lagrange formula but have been ignored fOi so long time.
第一章对拉格朗日反演在Riordan群理论中的应用进行了介绍,证明了一个组合等式:第二章通过对拉格朗日反演定理本身的分析,得到一个对任意的形式幂级数都适用的三个拟卷积公式,这些公式体现了任意能在零点解析的函数的内在性质。
-
Theorem of mean significance: The application derivative research function's nature wants directly or indirectly with the aid of Yu Zhongzhi,Specially Lagrange theorem of mean,Here is mainly from the equality proof, the inequality proof, existence asks some limits, the determination equation root and so on five aspects to carry on the discussion,so, The theorem of mean is transforms as the function in the sector research important tool, Must bring to the enough attention in the middle of ours study and the teaching.
中值定理意义:应用导数研究函数的性质都要直接或间接地借助于中值,特别是拉格朗日中值定理,这里主要是从等式的证明、不等式的证明、求一些极限、判定方程根的存在性等五个方面来进行讨论,因此,中值定理是转化为函数在区间上的研究的重要工具。在我们的学习与教学当中要引起足够的注意。
-
Then, on the basis of Atluri's work, a modified MLPG method is employed, in which the moving least squares approximation is used as a trial function and the Heaviside function is used as a test function of the weighted residual method.
然后基于Atluri等人的工作,采用移动最小二乘近似函数构造试函数,采用Heaviside函数作为加权残值法中的权函数,采用直接插值法施加本质边界条件而不采用罚函数法和拉格朗日乘子法。
-
Systems of inqualities,the minimum or maximum of a convex function over a convex set,Lagrange multipliers,and minimax theorems are among the topic treated,as well as basic results about the structure of convex sets and continuity and differentiability of convex functions and saddle-functions.
其中对不等式系统、凸集上的凸函数的极小或极大、拉格朗日乘子和极小极大定理做了专题论述,同时对凸集的结构和连续性以及凸函数的可微性和鞍点函数的基本结果做了介绍。
-
This article first introduced the Lagrange multiplicator law and the development, have given the function of many variables condition extreme value essential condition, and solved the function of many variables condition minimum problem using it.
本文第一介绍了拉格朗日乘数法及其拓展,给出了多元函数条件极值的必要条件,并利用它求解了多元函数的条件极值问题。
- 推荐网络例句
-
For a big chunk of credit-card losses; the number of filings (and thus charge-off rates) would be rising again, whether
年美国个人破产法的一个改动使得破产登记急速下降,而后引起了信用卡大规模的亏损。
-
Eph. 4:23 And that you be renewed in the spirit of your mind
弗四23 而在你们心思的灵里得以更新
-
Lao Qiu is the Chairman of China Qiuyang Translation Group and the head master of the Confucius School. He has committed himself to the research and promotion of the classics of China.
老秋先生为中国秋阳翻译集团的董事长和孔子商学院的院长,致力于国学的研究和推广。