英语人>网络例句>微分方程的积分 相关的搜索结果
网络例句

微分方程的积分

与 微分方程的积分 相关的网络例句 [注:此内容来源于网络,仅供参考]

By discussing the position hypothesis of fractional-dimension derivative about general function and the formula form the hypothesis of fractional-dimension derivative about power function, the concrete equation formulas of fractional-dimension derivative, differential and integral are described distinctly further, and the difference between the fractional-dimension derivative and the fractional-order derivative are given too. Subsequently, the concrete forms of measure calculation equations of self-similar fractal obtaining by based on the definition of form in fractional-dimension calculus about general fractal measure are discussed again, and the differences with Hausdorff measure method or the covering method at present are given. By applying the measure calculation equations, the measure of self-similar fractals which include middle-third Cantor set, Koch curve, Sierpinski gasket and orthogonal cross star are calculated and analyzed.

通过讨论一般函数的分维导数的位置假设及幂函数的分维导数的形式假设,进一步明晰了幂函数的分维导数、分维微分及分维积分的具体方程形式,给出分维导数与分数阶导数的区别,随后讨论了基于一般分形测度的分维微积分形式定义导出的自相似分形的测度计算方程具体形式,给出了其与目前 Hausdorff 测度方法的区别,并对包括三分 Cantor 集合、 Koch 曲线、 Sierpinski 垫片及正交十字星形等自相似分形在内的测度进行了计算分析。

Within this context, four specific areas are addressed:(1) By means of finite integration technique, a new kind of the first order partial difference equation is derived from the original disperse transmission line equation of the uniform waveguide's. As it is the kind of one dimension Dirichlet's boundary problem, it is convenient for us to solve this equation from the leapfrog scheme. Because computation is carried out in one dimension, both high calculation efficiency and precision have been obtained in this method. Meanwhile, this method provide us a different selection to simulate the transient response of waveguide with non-simplical, for examples cylinder and elliptic waveguide, and avoid solving the second order equation, or using finite difference time domain to simulate a three dimension problem, sometimes the latter precision is not satisfied with the need, or low efficiency.

在这一研究内容下,主要研究四个方面的问题:(1)在完成金属波导传输线方程时域形式的基础之上,应用有限积分技术,把波导特征模式的色散传输线方程,化简为一组新的一阶偏微分方程组,该边值问题属一维Dirichlet边值问题,从而便于用蛙跳格式求解,由于是在一维中计算,该方法具有很高计算效率和精度,从而避免了以往为得到金属波导中特征模的时域响应特性,须要求解二阶方程,或用时域有限差分方法求解三维问题的方法,对于后者来说,计算有时是不准确的,或是很耗时的例如计算诸如圆波导、椭圆波导等其它复杂形状的波导。

Use of the finite difference method for Volterra equation here as a variable element of the equation, As the same...

用差分方法求解沃尔泰拉方程,此处为一个变元的方程,由于该方程同时含有微分和积分,一般求解有一定的困难。

MATLAB程序-used method for multiple preoperational Ertaila equation here as a variable element of the equation, As the same time contain differential equations and integral, the general solution is definitely difficult.

用LAPLACE方法求解多维沃尔泰拉方程,此处为一个变元的方程,由于该方程同时含有微分和积分,一般求解有一定的困难。

In the second chapter, generalizing the contractilities and asymptotical stabilities for multi-delay integro-differential equations. Under proper stepsize, we obtain the discretization schemes of Runge-Kutta methods with the compound quadrature formula and the Pouzet quadrature formula, and besides, derive the global and asymptotical stabilities. Moreover, the numerical experiments show that the presented methods are highly effective.

第二章,考虑了多延迟情形下的积分微分方程,推广理论解的收缩性与渐近稳定性结果,在适当的步长下,利用复合求积公式与Pouzet求积公式扩展Runge-Kutta方法,获得离散的计算格式,并且证明了方法是数值稳定的,此外,数值试验表明此计算方法在实际应用中是非常有效的。

The numerical calculation commonly used for the Delphi process more than 100, including solutions of linear algebraic equations, interpolation, numerical integration, special, function approximation, eigenvalue problems, data fitting equation Root and solve nonlinear equations, functions and the extreme optimization, statistical data description, Fourier transform spectra, solution of ordinary differential equations reconciliation partial differential equations.

本书共有数值计算中常用的Delphi子过程100多个,内容包括解线性代数方程组、插值、数值积分、特殊函数、函数逼近、特征值问题、数据拟合、方程求根和非线性方程组求解、函数的极值和最优化、数据的统计描述、傅里叶变换谱方法、解常微分方程组和解偏微分方程组。

Then, it studies the supply chain management system as a complex system to confirm the state existing during operating of the system. After that, it conducts a probability analysis on the state which the system located by applying supplement variable method, and establishes the model of distributed parameter system in a form of partial differential equations. Combining C0 ? semigroup theory in the functional analysis, it conducts a dynamic analysis on the established mathematical model. Using this method, it obtains the mathematical expression of the dynamic solution and the steady state solution, and proves the uniqueness, non-negativity and the asymptotic stability of the system solution. This dissertation applies the Matlab tool and uses two-step, three-step Simpson integral equation to imitate the condition of system solution. Then, it adds possible mode of failure and the optimization adjustment state to the system, based on which it has established the distributed parameter system model which is described by partial differential system of equations. Combining the functional analysis C0 ? semigroup theory, it studies the established mathematical model, and obtains the mathematical expression of the dynamic solution system and the steady state solution. It has proven the existing of uniqueness of the system solution, the asymptotic stability of system solution and the system solution. In addition, it has lying the theory rationale for further analysis and the research on the optimization of system.

本文首先简要综述了供应链理论、可靠性研究、鲁棒性研究以及供应链鲁棒性研究的现状;然后,将供应链系统作为一个复杂系统来分析,确定了系统运行过程中所经历的状态,通过引入补充变量的方法,建立了用偏微分方程组描述的分布参数系统模型,用泛函分析中的C_0 -半群理论得到了系统动态解和稳态解的数学表达式,证明了系统解存在的唯一性、非负性和指数阶渐近稳定性;并借助Matlab工具,利用二阶、三阶辛普森积分方程模拟系统解的性态,并给出系统动态解的仿真图;本文又对上述系统增加了系统可能失效状态和优化调整状态,并在此基础上建立了用偏微分方程组描述的分布参数系统模型,同样用泛函分析中的C_0 -半群理论对所建立的数学模型进行了研究,得到系统动态解和稳态解的数学表达式,证明了系统动态解存在的唯一性、非负性及渐近稳定性,为进一步分析和研究供应链优化奠定了理论基础。

The wave function of the phonon is assumed to take thecoherent state,a self-consistent integrodifferential equationsatisfied by the electron wave function is derived.Solving for thisequation,we get the polaron ground-state energy E=-0.1085α2, whichis very close to these of previous strong-coupling theories.In chap.4,we will apply approaches developed in chaps.2 and 3 to discuss theimportant two-dimensional(2D)polaron problem.

把声子部分取成相干态的形式,我们推导出电子波函数所满足的非线性的微分积分方程,求解这个方程,我们得到基态能为E=-0.1085α2,它与以前的各种强耦合理论的结果非常接近,在第四章中,我们利用在第二,三章中发展的方法讨论很重要的二维极化子问题。

It is found thatthe fractal dimension D=1.25 corresponds to the lowest criticalcoupling constant αc=1.9,D=1.73 corresponds to the highest criticalratio of dielectric constants ηc=0.163,and when D≤1.145 bipolaronscan not exist at any rate.In chap,4,we will propose a novelapproach to the calculation of the exciton ground-state energy for thestrong-coupling case.Different from all previous methods,the wavefunction of the phonon part is assumed to take a form related to thewave function of the relative motion.We obtain the exciton energy bysolving the derived integrodifferential equation rather than select ahydrogen-like form to minimize the energy expectation.

结果发现,分数维的维数D=1.25对应最小的临界的电-声耦合常数(αo=1.9),D=1.73对应最大的临界的介电常数比(ηc=0.163),当分数维的维数D≤1.145时,双极化子无论如何也不可能存在,在第四章中,我们将提出一种新颖的变分方法来计算强耦合的激子-声子系统的基态能,不同于以前所有的方法,我们取声子的波函数与相对运动波函数有关的形式,而不是假定一个固定的关于相对运动坐标r的函数形式,得到相对运动波函数所满足的非线性的微分积分方程,我们数值求解这个微分积分方程得到系统基态能,而不是选择一个类氢原子的波函数变分使得能量的期待值最小。

First,the 3-d dynamic equations in cylindrical coordinate for transversely isotropic saturated soil were transformed into a group of governing differential equations with 1-order by the technique of Fourier expanding with respect to azimuth,and the state equation was established by Hankel integral transform method,furthermore the transfer matrixes within layered media were deriv...

首先,通过方位角的Fourier变换,将圆柱坐标系下横观各向同性饱和土的三维动力方程转化为一阶常微分方程组,基于径向Hankel变换,建立问题的状态方程,求解状态方程后得到传递矩阵;其次,利用传递矩阵,结合层状饱和地基的边界条件、排水条件及层间接触和连续条件,给出了任意简谐激振力作用下层状横观各向同性饱和地基动力响应的通解;然后,按混合边值问题建立层状饱和地基上弹性圆板非轴对称振动的对偶积分方程,并将对偶积分方程化为易于数值计算的第二类Fredholm积分方程,并给出了算例。

第15/16页 首页 < ... 8 9 10 11 12 13 14 15 16 > 尾页
推荐网络例句

Plunder melds and run with this jewel!

掠夺melds和运行与此宝石!

My dream is to be a crazy growing tree and extend at the edge between the city and the forest.

此刻,也许正是在通往天国的路上,我体验着这白色的晕旋。

When you click Save, you save the file to the host′s hard disk or server, not to your own machine.

单击"保存"会将文件保存到主持人的硬盘或服务器上,而不是您自己的计算机上。