微分
- 与 微分 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In part 2, we study the properties of the solution z of backward stochastic differential equation and backward doubly stochastic differential equation.
第二部分分别研究了倒向随机微分方程和倒向重随机微分方程中解z的性质。
-
It shows the quality and points of saturated solution of differential equations in Banach space.
给出了Banach空间微分方程的一个边界点定理,它刻划了Banach空间微分方程饱和解的端点性质,改进了已有的结果。
-
In this paper we study the method of interpolation by radial basis functions in H~k(k ≥ 1) and give some error estimates. By means of such interpolation with a special kind of radial basis function, we construct a basis in H~k(k ≥ 1). Combined with the Galerkin method, this theory can be applied to solve boundary value problems for elliptic partial differential equations (such as the third boundary value problem for Poisson equation and the corresponding problem for the biharmonic equation), and some numerical experiments are also given.
本文从求解偏微分方程的角度出发,在被逼近函数u属于一般的Sobolev空间H~k(k≥1)的情形,引入了一种径向基函数插值方法,并建立了相应的误差估计;再利用这种插值性质,从一类特殊径向基函数出发构造Sobolev空间的一组基,针对Poisson方程第三类边值问题和重调和方程类似边值问题,为用无网格算法求解偏微分方程边值问题建立了相应的理论,并通过算例来验证了这一算法。
-
By transforming the interlace series type linear differential equation with coefficient containing binomial coefficients and arrangement number into the linear differential equation of successive integral,the theory and method for solving this kind of equation are determined.
通过把系数含有二项式系数与排列数的交错级数型线性微分方程化为可逐次积分的线性微分方程,找出了求这类方程通解的方法与理论,把所得定理给出了严格的证明,并通过实例介绍了它的应用。
-
It is a boundary value problem described by a third-order nonliear differential equation which is called the Blasius equation.
它是一个由三阶非线性微分方程描述的边值问题,其微分方程称为Blasius方程。
-
Applied Green's function, the differential equations will be transformed into the equivalent of integral equations, sufficient conditions for existence and uniqueness of positive solutions for fourth-order nonlinear singular continuous boundary value problems with p-Lapacian operator are obtained.
文中,利用格林函数,将微分方程转化成等价解的积分方程,给出了该奇异非线性四阶p-Lapacian微分方程边值问题的正解的存在及惟一性的一个充要条件。
-
The boundary value problem of ordinary differential equations is an important domain in differential equations.
常微分方程的边值问题是微分方程的一个重要研究领域。
-
The ordinary differential equation singular boundary value problem is one of the most important branches of ordinary differential equations.
常微分方程边值问题是常微分方程理论研究中最为重要的课题之一。
-
Secondly, we also introduce the development of multi-point boundary value problems of differential equations.
首先我们介绍了常微分方程振动性理论与泛函微分方程振动性理论的起源与发展。
-
At the same time, the variational stability of bounded variation solutions at the effect of perturbation and non-perturbation for the impulsive differential system are discussed, the Ljapunov type theorems for variational stability and asymptotically variational stability for impulsive differential systems are established.
同时,讨论了在无扰动和有扰动的情况下,这类固定时刻脉冲微分方程有界变差解的变筹稳定性,建立了此类微分系统有界变差解变差稳定性和渐近变界稳定性的两个Ljapunov型定理。
- 推荐网络例句
-
Do you know, i need you to come back
你知道吗,我需要你回来
-
Yang yinshu、Wang xiangsheng、Li decang,The first discovery of haemaphysalis conicinna.
1〕 杨银书,王祥生,李德昌。安徽省首次发现嗜群血蜱。
-
Chapter Three: Type classification of DE structure in Sino-Tibetan languages.
第三章汉藏语&的&字结构的类型划分。