英语人>网络例句>幂函数 相关的搜索结果
网络例句

幂函数

与 幂函数 相关的网络例句 [注:此内容来源于网络,仅供参考]

The concept of the weighted logarithmic power mean is introduced; its relation with two-parameter mean is given; the inequality for weighted logarithmic power mean is derived; the magnitude relation among upper bounds of geometric mean and arithmetic mean of geometrically convex functions are made certain.

建立了几何凸函数的对称拟算术平均不等式,对文献[1]提出的不等式进行了推广统一;引进加权对数幂平均的概念,建立起其与双参数平均之间的关系,得到加权对数平均不等式,从而确定了几何凸函数的几何平均、算术平均的上界的大小关系;最后,提出了几何凸函数的对称拟算术平均不等式的推广问题。

The techniques of computing the domain of convergence and sum function and expanding functions in several variables to power series of functions in several variables are mainly discussed by many examples.

引入了多元函数项级数的概念,给出了其收敛域及和函数的定义;通过详实的例子讨论了多元幂级数的收敛域、和函数及多元函数展开为多元幂级数的计算方法。

Power series, radius of convergence; function that can be expanded in a power series on an interval.

幂级数;收敛半径;可展开为幂级数的函数。

Property 2 (Term-by-Term Integration) Suppose that is the sum of a power series on interval ;that is,Then, if is interior to ,and the radius of convergence of the integrated series is the same as for the orginal series.

性质 2 幂级数的和函数在其收敛域上可积,并有逐项积分公式,,逐项积分后所得到的幂级数和原级数有相同的收敛半径。

The paper gives a derivation rule of the power exponential function and analyzes some common calculation methods.

摘要证明了一条幂指函数的求导法则,并总结了幂指函数导数计算的常用方法。

The paper provides the theorem of the limit of combination of power and exponent function ,which gives us a new method to work out the limit of this kind of function.

给出了幂指函数极限定理,对求幂指函数极限的方法进行了讨论,并给出一些应用实例。

The power exponent, however, is much smaller than that predicted by the linear adiabatic theorem.

这个函数关系与线性系统的绝热参量和绝热保真度的幂律关系非常相似,但该系统的幂指数要远小于线性系统的幂指数。

In this paper the different methods ti find general term formulas of power series sum functions,by means of which coefficients are higher arithmetical of geometrical sequence .

利用差分法导出了求幂级数和函数的一个通项公式,用它能求出系数为高阶等差数列和高阶等比数列的幂级数∑∞n=0 anxn的和函数

The purpose of this dissertation is to study a principle or method to describe and analyze the complex problems with high gradients arising from practical engineering. The main contents cover:1. The Bezier function was introduced to approximate high gradient functions, and a suitable coupled function was derived. Some detail numerical results show that the Bezier-based function is dominant over other combination function such as polynominal and trigonometric series, when to describe a high gradient function.

针对工程中大量存在的高梯度问题进行函数逼近的研究,引入Bezier函数对高梯度问题进行函数逼近,构成以Bezier函数为主的复合逼近函数,数值考证表明:与常规多项式插值函数的逼近及"幂/三角"复合函数的逼近相比,基于Bezier函数的逼近函数对高梯度问题的描述具有明显优势。

The matrix =( xi, xjp having the e-th power of the greatest common P-divisorp of xi and xj as its-entry is called the e-th power GCD matrix on S. The matrix = having the e-th power of the least common P-multiple p of xi and xj as its-entry is called the e-th power LCM matrix on 5. We obtained the following results:(1) is nonsingular for any set S;(2) If S is an FC set, then the determined of has formula Det =Jpe(x1)...Jpe, where the function Jpe is the generalized Jordan totient function;(3) A formula of the inverse of is given when S is an FC set;(4) If S is an FC set, then |.

以_P的e次方为第i行j列元素的矩阵称为定义在S上的e次幂GCD矩阵,记为;以_P的e次方为第i行j列元素的矩阵称为S上的e次幂LCM矩阵,记为,我们得到了如下结果:①定义在集合S上的e次幂GCD矩阵是非奇异的;②若S是R上的FC集,则S上的e次幂GCD矩阵的行列式Det=J_p~e(x_1)J_P~e(x_2)…,J_p~e,其中J_p~e为R上的Jordan函数;③当S为FC集时,得到了的逆矩阵~-1的表达式;④证明了当S是FC集时,整除,即等于与R上另一个矩阵的乘积。

第10/15页 首页 < ... 6 7 8 9 10 11 12 13 14 ... > 尾页
推荐网络例句

On the other hand, the more important thing is because the urban housing is a kind of heterogeneity products.

另一方面,更重要的是由于城市住房是一种异质性产品。

Climate histogram is the fall that collects place measure calm value, cent serves as cross axle for a few equal interval, the area that the frequency that the value appears according to place is accumulated and becomes will be determined inside each interval, discharge the graph that rise with post, also be called histogram.

气候直方图是将所收集的降水量测定值,分为几个相等的区间作为横轴,并将各区间内所测定值依所出现的次数累积而成的面积,用柱子排起来的图形,也叫做柱状图。

You rap, you know we are not so good at rapping, huh?

你唱吧,你也知道我们并不那么擅长说唱,对吧?