局部最小值
- 与 局部最小值 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Because of appearing empty aggregates in the time zone (the time zone do not include the information), we only establish the indeterminate grey differential equation according to the approximate condition of the differential equation.
利用灰色微分方程中的最小二乘估计参数:进而得到灰色神经网络初始的权值及阈值,这样使初始的权值和阈值更接近准确值,克服了以往BP网络中初始权值的随机性和不确定性,减少了网络的训练次数,提高了网络收敛速度和输出的精度,为避免网络训练陷入局部极小值也起到了重要的作用。
-
This paper presents a new algorithm for feed forward neural networks based on a new optimal target function constructed according to Young inequality in the conjugate of convex function.
提出的算法是利用凸函数共轭性质中的Young不等式构造优化目标函数,这个优化目标函数对于权值和隐层输出来说为凸函数,不存在局部最小。
-
Fuzzy h-prototypes algorithm is one of the most effective algorithms of cluster analysis,however,the problem of sensitive to initial value and vulnerable to the problem of local minimum exists.
模糊h-prototypes算法是当前聚类分析中最有效算法之一,但是存在对初始值敏感、容易陷入局部极小值的问题。
-
In order to avoid the local minimum and reduce redundant computation, the traditional MIL algorithm-diverse density was improved.
为了避免局部最小值和减少冗余计算量,对传统的多示例学习算法-多样密度算法进行了改进。
-
It simulates genetic evolutionary process of organisms and avoids local minimum value.
该方法模拟了生物遗传进化的过程,克服了传统方法容易陷入局部最小值的缺点。
-
To avoid slumping it ,one method is to find proper start point,another is to find analgorithm to speed convergence.
现在的调节方法一种是找到恰当的初始值点,从而跳过局部最小值点,另一种方法是找到能迅速脱离局部最小值点的学习算法。
-
According to disadvantage of AS that the speed low of convergentiss and easily entering the stagnation,improving the AS in some aspect by the way that importing pheromone windows that the value of pheromone cannot exceed the window,only deposit the pheromone on the edge that belongs to the iteration shortest solution path,releasing additional pheromone to the edge belongs to the so-far shortest solution path,judging the situation of convergent and to reinitialize pheromone,optimizing the solutions by local search procedure at the end of every iteration,modifying the transition probability by add some problem specific parameters and so on.
本文主要运用蚁群优化算法(Ant Colony Optimization,ACO)来求解VRP。针对蚁群算法收敛性比较差,易于停滞的缺陷,通过使用信息素窗口限制、信息素的最大最小值,只更新信息素迭代中最好解,增加了精英的蚂蚁,信息素重新初始化之前先判断出汇聚情况,在每次迭代过程中加入局部的搜索进行优化,在对蚁群算法进行了优化时考虑选择概率当中加入与问题的相关参数等措施,从而使蚁群算法的收敛性得到大大提高,避免了算法的停滞现象。
-
The improved Pareto multi-objective optimization with GA adopts non-dominated ranking, elitist preserve and niche approaches, and proposes individual vector module adaptive function as wash out rule. As an example, two duality functions are used to validate the two algorithms.
通过两个多元函数的最小值优化算例验证,两种方法均获得较为均匀分布的Pareto前沿,并且改进的Pareto遗传多目标优化算法由于采用了小生境技术,使得最优解的分布更加均匀,避免了局部收敛的问题。
-
In this method the initial values of perspective projective matrix; rotative matrix and translative matrix are calculated from the fundamental matrix, than these matrices are optimized based on the coordinate value of corresponding points.
该方法从基本矩阵计算初始透视投影、旋转和竖直平移变换矩阵,然后以对应点坐标为基础对这些变换矩阵进行优化计算,从而有效地避免了优化计算的局部最小值,而且不过分依赖基本矩阵的计算精度。
-
A high-speed digital-to-analog converter measurement method acquires and quantizes an analog ramp output by the DAC corresponding to a digital ramp input to produce a quantized ramp, determines a start and end of the quantized ramp, obtains a difference between the quantized ramp and an ideal ramp to produce a quantized periodic signal, determines a frequency for a qualified peak from an FFT of the quantized periodic signal, produces a mask filtered periodic signal from an iFFT around the qualified peak, and determines a sample window spanning a local maximum and minimum for each period of the quantized periodic signal.
一种高速模拟数字转换器测量方法,采集和量化由DAC输出的相应于数字斜坡输入的模拟斜坡以产生量化的斜坡,确定量化的斜坡的开始和结束,获得量化的斜坡和理想的斜坡之间的差值以产生量化的周期信号,从量化的周期信号的FFT中确定合格峰值的频率,从合格峰值周围的iFFT中产生屏蔽过滤的周期信号,并且在量化的周期信号的每一周期内确定跨越局部最大值和最小值的采样窗口。
- 推荐网络例句
-
Plunder melds and run with this jewel!
掠夺melds和运行与此宝石!
-
My dream is to be a crazy growing tree and extend at the edge between the city and the forest.
此刻,也许正是在通往天国的路上,我体验着这白色的晕旋。
-
When you click Save, you save the file to the host′s hard disk or server, not to your own machine.
单击"保存"会将文件保存到主持人的硬盘或服务器上,而不是您自己的计算机上。