定理
- 与 定理 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
First the theorem is verified for the smallest admissible value of the integer.
归纳法:证明涉及到正整数变量的定理所运用的两部法。
-
This paper first analyses the stress acting on the cable by means of tiny segment analytical methods, establishes cable's stress equation, and finds out the relation between the tethered aerostat's position and its stress acting by cable; then, based on the momentum and moment of momentum theorem, the longitudinal nonlinear dynamic equation is established; Finally a numerical simulation of dynamic responses of the balloon and cable to gust are carried out.
本文首先通过微段分析法对缆绳进行受力分析,建立缆绳的受力方程,找出了系留气球在空中的位置同系留气球所受缆绳拉力的关系;然后根据动量和动量矩定理建立了球体的纵向非线性运动方程;最后通过数值仿真计算,对系留气球的纵向动态响应特性进行了分析。
-
First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.
文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按"序"最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。
-
It consists of the next three aspects: firstly, we study Murthys' open problem whether the augmented matrix is a Q0-matrix for an arbitary square matrix A , provide an affirmable answer to this problem , obtain the augmented matrix of a sufficient matrix is a sufficient matrix and prove the Graves algorithm can be used to solve linear complementarity problem with bisymmetry Po-matrices; Secondly, we study Murthys' conjecture about positive semidefinite matrices and provide some sufficient conditions such that a matrix is a positive semidefinite matrix, we also study Pang's conjecture , obtain two conditions when R0-matrices and Q-matrices are equivelent and some properties about E0 ∩ Q-matrices; Lastly, we give a counterexample to prove Danao's conjecture that if A is a Po-matrix, A ∈ E' A ∈ P1* is false, point out some mistakes of Murthys in [20] , obtain when n = 2 or 3, A ∈ E' A ∈ P1*, i.e.
本文分为三个部分,主要研究了线性互补问题的几个相关的公开问题以及猜想:(1)研究了Murthy等在[2]中提出的公开问题,即对任意的矩阵A,其扩充矩阵是否为Q_0-矩阵,给出了肯定的回答,得到充分矩阵的扩充矩阵是充分矩阵,并讨论了Graves算法,证明了若A是双对称的P_0-矩阵时,LCP可由Graves算法给出;(2)研究了Murthy等在[6]中提出关于半正定矩阵的猜想,给出了半正定矩阵的一些充分条件,并研究了Pang~-猜想,得到了只R_0-矩阵与Q-矩阵的二个等价条件,以及E_0∩Q-矩阵的一些性质;(3)研究了Danao在[25]中提出的Danao猜想,即,若A为P_0-矩阵,则,我们给出了反例证明了此猜想当n≥4时不成立,指出了Murthy等在[20]中的一些错误,得到n=2,3时,即[25]中定理3.2中A∈P_0的条件可以去掉。
-
The semi-simple ring and semi-prime ring. Using properties of zero-divisors, regular elements and diaphysis elements , we obtain some results on the commutativity of Kthe semi-simple ring and semi-prime ring as follows:Let R be aKO|..
the半单纯环、半质环以及任意环的研究,利用零因子、正则元及骨干元的性质以及稠密性定理等相关知识,得到了关于Ko|。。
-
Based on the filtered Lie algebra of the universal enveloping algebra, the algebraic structure of projected subsystems are studied. It is proved that they have simple decompositions, and the construction of the representations is given as well as the corresponding criterion for project limit controllability.
基于泛包络代数的滤李代数结构,研究了投影子系统的代数结构,证明它们具有简单的分解形式,并给出了它们的表示的构造方法和投影极限能控性的判别定理。
-
Lagrange Interpolation; Osculatory Interpolation; Dimension Of Interpolation; Algebraic Curve And Surface; Bezout's theorem
Lagrange插值;切触插值;插值空间维数;代数曲线曲面; Bezout定理
-
The paper applies algebraic geometry, computational geometry, approximation theory to study the following problems: the Nother type theory and the Riemann-Roch type theory of the piecewise algebraic curve; the number of real intersection points of piecewise algebraic curves; the real piecewise algebraic variety and the B-net resultant of polynomials.
本文应用代数几何,计算几何,函数逼近论等学科的基本理论,分别就分片代数曲线的Nother型与Riemann-Roch型定理;分片代数曲线的实交点数;实分片代数簇以及多项式的B-网结式进行研究。
-
However, in order to compute the irreducible ascending chain in Wu's method, polynomial factorizations over successive algebraic extension fields are needed.
而在吴零点分解定理中,多个代数扩域上的因式分解是非常基本的一步,主要用于不可约升列的计算。
-
We obtain that if any 〓 is discrete or elementaryand 〓 satisfies Condition A,then the algebraic limit G of group sequence 〓is discrete or elementary.
首先,我们不再仅仅考虑离散非初等群集〓的代数极限G,而是离散群或初等群群集〓的代数极限G,我们对〓上〓变换群中斜驶元及其不动点进行了细致研究,注意到任意一个斜驶元存在一个仅仅含有斜驶元的领域,从而证明了初等群群集〓的代数极限G仍然是初等群,进而我们得到了一个代数收敛定理:如果任一〓是离散群或者初等群并且〓满足条件A,那么,群列〓的代数极限G一定是离散群或者初等群。
- 推荐网络例句
-
The labia have now been sutured together almost completely.The drains and the Foley catheter come out at the top.
此刻阴唇已经几乎完全的缝在一起了,排除多余淤血体液的管子和Foley导管从顶端冒出来。
-
To get the business done, I suggest we split the difference in price.
为了做成这笔生意,我建议我们在价格上大家各让一半。
-
After an hour and no pup, look for continued contractions and arching of the back with no pup as a sign of trouble.
一个小时后,并没有任何的PUP ,寻找继续收缩和拱的背面没有任何的PUP作为一个注册的麻烦。