可积性
- 与 可积性 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Two types of new Abel differential equation are structured by method of variation replacement, variation position transformation and compound function derivation law.
借助变量替换法、交换变量位置法及复合函数求导法则,构造出两类新的 Abel型微分方程,论证它们的可积性,提供可积的判据,从而推广有关文献的结论,扩大微分方程的可积范围。
-
The definition of the absolute value for a fuzzy number is obtained.Furthermore,a lot ofproblems,such as absolute integrability,bounded variation and absolute continuity,arepresented and discussed.The representation theorem of the absolute values of fuzzy num-bers is established.It plays an important role in discussing the problems conceming theabsolute value.The relation between the absolute integrability and integrabili-ty is discussed,and the following result is obtained:aintegrable fuzzy-number-valued function is absolutely integrable iff it is integrable.The relation between theabsolute integrability and the absolute continuity of the primitive for fuzzy-number-valuedfunctions is dealt with.It is also pointed out that a fuzzy number valued function is ab-solutelyintegrable if and only if its integral primitive is fuzzy absolutely continuous.
提出了模糊数绝对值的概念并讨论了与绝对值相关的一系列问题,如绝对可积性、有界变差性、绝对连续性等,给出了模糊数绝对值的定义以及表示定理,该表示定理在涉及绝对值问题的讨论中起非常重要的作用;讨论了绝对可积与可积之间的关系,得到了结论:可积的模糊数值函数绝对可积的充要条件是该模糊数值函数可积;给出了模糊数值函数绝对可积与其积分原函数绝对连续性之间的关系,指出模糊数值函数绝对可积的充要条件是其原函数模糊绝对连续。
-
By getting Lebesgue characteristic of integrable function of Riemann from the definition of Gather zero measure, discussing the relation between almost continuous everywhere and existent of limit, it gets the theory which is from the function integrability to the consecution and from consecution to the limit existence .i.e. the almost limit existence is equal to the almost continuous everywhere in the integrable function of Riemann. It also gets a unified condition which has a wider range than regulated function and comes to the conclusion that the function of bounded variation is the integrable function of Riemann.
通过定义零测度集给出了可积函数的特征,讨论了其几乎处处连续与极限存在的关系,从而得到了从函数可积性到连续性,从连续性到极限存在性的函数特性理论,即可积函数中极限的几乎处处存在与几乎处处连续是等价的,得出比正规函数更加宽泛的统一条件,得出了有界变差函数是可积函数的结论。
-
This article is mainly discussed the relation between some important concepts and conclusions about the Limit of Sequence, the Limit, Continuity ,Differentiability, Integrability of Function, the Infinite Series , and the Limit, Continuity, Derivativeness,Differentiability of Multivariable Function ,as well as the Multiple Integral, and Integral with parameter .
本文对数列极限,一元函数的极限、连续性、可微性、可积性,无穷级数,多元函数的极限、连续性、可导性、可微性以及重积分,参变量积分中的一些重要概念和结论之间的关系进行了一些探讨,每一个问题都作了适当说明或举出反例,并对一些相关的内容进行了讨论,得到若干结果。
-
This paper discusses the conditions of integrability of the function and study how to use the application of relevant theorem to determine the specific function of the integrability, and other related issues.
本文探讨了函数可积性条件以及如何应用相关定理来判定特殊函数可积性等相关问题。
-
And it makes a detailed and brief exposition, and offers some extremely targeted examples of the application, in order to understand the integrability conditions and enhance the understanding and application capability.
文章最后专门讨论了复合函数的黎曼可积性和可积函数列的逐项积分,得出了如何根据特定条件来判断一个复合函数可积性的定理和判定一个函数列可逐项积分的一个充分条件,并将其推广,得到一个更弱的充分条件。
-
This paper discusses the integrability of Riemann integral systematically: By analyzing the common characters of a lot of integral calculus, it abstracts the concept of Riemann integral and discusses its integrability of Riemann integral and then gets integrable functions.
摘要本文较为系统地讨论了积分的可积性:通过分析诸多积分概念的共性,抽象定义了积分并详细讨论了其可积性,得出了可积函数类。
-
This paper discusses the integrability of Riemann's integral theory systematically: By analyzing the common characters of a lot of integral calculus, it abstracts the concept of Riemann integral and discusses its integrability of Riemann's integral theory and then gets integrable functions.
摘要本文较为系统地讨论了积分可积性理论:通过分析诸多积分概念的共性,抽象定义了积分,详细讨论了其可积性理论,得出了可积函数类。
-
Chapter 5 and 6 are concentrated on the fundamental problem how to con-struct finite-dimensional and infinite-dimensional Liouville integrable Hamiltonsystem.Starting from two isospectral problems,Tu's scheme is applied to gen-erate the corresponding CKdV hierarohy and coupled Burgers hievachy,andthey are shown to be Liouville integrable Hamilton systems.Two spectral prob-lems,which contain three and four potentials respectively,are also studied byTu's scheme.Two new Liouville integrable Hamilton hierarchy are estab-lished.A new general approach using Lenard's gradient sequence is presentedto obtain Lax integrable hierarchy and their zero curvature representation,andsome examples are given.The nonlinearization procedure is applied to theeigenvalue problem of coupled Burgerrs hierarchy.It is shown that underBargmann constraint,the spatial part of the Lax pairs is nonlimearized to be afinite-dimensional Liouville completeiy integrable Hamilton system.
第五、六章研究如何从一个谱问题出发构造可积发展方程族及其零曲率表示、Hamilton结构和判断Liouville可积性:通过对二类具有2个位势的等谱问题直接研究,利用屠格式生成了耦合KdV族和耦合Burgers族,并证明它们均为Liouville可积的广义Hamilton方程族;而通过分别具有3个和4个位势的等谱问题,遵循屠格式构造了二族新的Liouville可积的广义Hamilton方程族;给出了利用Lenard梯度递推序列产生发展方程族及其零曲率表示的一种方法,作为应用,讨论了CKdV族,BPT族及耦合Burgers族的产生及其零曲率表示;应用非线性化技巧,证明了在Bargmann约束下,耦合Burgers族的Lax组可被线性化为Liou-ville完全可积的Hamilton系统。
-
In the third chapter,We study some geometric properties and spectral propertiesof the Jacobi operator on a solvable extension G of Heisenberg groups H.In the firstsection,we give the definition of G and some fundamental geometric properties on G.Inthe second section,we discuss the Integrability of certain subbundles and the geometricstructure of the induced foliations in case of integrability.In the third section,we studythe spectral properties of the Jacobi operator of G.
可解李群与类对称空间亦密切相关,Damcek-Ricci空间即是广义Heisenberg的一可解扩张李群,在第三章中,我们构造且研究了Heisenberg群的一可解扩张李群G的几何性质,第一节讨论了G的曲率,李指数映射,整体坐标等基本几何性质;第二章研究了TG的某些子丛的可积性及可积时诱导叶片的几何结构;第三节给出了G的Jacobi算子的特征值和相应的特征子空间。
- 推荐网络例句
-
They weren't aggressive, but I yelled and threw a rock in their direction to get them off the trail and away from me, just in case.
他们没有侵略性,但我大喊,并在他们的方向扔石头让他们过的线索,远离我,以防万一。
-
In slot 2 in your bag put wrapping paper, quantity does not matter in this case.
在你的书包里槽2把包装纸、数量无关紧要。
-
Store this product in a sealed, lightproof, dry and cool place.
密封,遮光,置阴凉干燥处。