可积分性
- 与 可积分性 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Even the above-mentioned separability of quantity from substance gives us no clue to the solution, since according to the best founded opinions not only the substance of Christ's Body, but by His own wise arrangement, its corporeal quantity, ie its full size, with its complete organization of integral members and limbs, is present within the diminutive limits of the Host and in each portion thereof.
即使是上面提到的可分离性,数量,从物质,使我们没有任何线索,以解决问题,因为根据最佳创立的意见不仅是物质的基督身体的,而是由他自己的明智的安排下,其体量,即它的全尺寸,同其完整的组织积分委员及四肢,是目前内微小的界限所在,并在每一个部分。
-
By means of integralequation methods creatively along with other modern mathematical theories,this paperfocuses on finding solvability conditions and conditional well-posedness(especiallyconditional stability),constructing stabilized algorithms,and carrying throughnumerical simulation.
本文创造性地应用积分方程方法,借助现代数学手段,着重研究这些问题的可解性条件、条件适定性,构造稳定化算法,并进行数值模拟。
-
And we also study the absolute integrability and continuity of fuzzy-number-valued functions in the plane under consideration of different derivate bases.
最后讨论了在不同导数基意义下的模糊数值函数的绝对可积性和连续性问题,完善了非绝对模糊积分理论。
-
In section 2 of chapter 2, we obtain the integral expression of Ф and prove the twice-continuous differentiability in (0,+∞).
在第三章第二节,我们得到了Ф的积分表达并证明了其二次连续可微性。
-
In section 3, we take account of Ф〓,Ф〓. Their integral expressions and twice-continuous differentiability are also obtained.
在第三节中,我们考虑Ф〓,Ф〓,它们的积分表达和二次连续可微性也被得到。
-
Using the concept of locally mean inte-grability which we give,we investigate the differentiability of the integral primitives.
对于模糊数值函数的导数问题进行了较为深入的探讨,尤其是积分原函数的可导性问题。
-
Solvable conditions for electrostatic problems using Gauss s law with direct integral method are presented.
给出应用高斯定理由直接积分法求解静电场问题时的可解性条件,用反例说明常见教科书中对此问题的表述是不完备的
-
And the absolute integrability of integral is discussed.
并讨论了积分的绝对可积性。
-
In fact, for interior problem, solution of the direct boundary integral equation always exists.
事实上,对内边值问题,第一类Fredholm 直接边界积分方程的可解性条件是自然得到满足的,本文对此做了验证。
-
From teaching experience of long term,in a new way,author put forward to a brand new succinct comment and certification of Riemann Integral.
在传统的定积分教学中,往往采用达布上和、下和方法来证明函数可积性,过程繁琐,难于理解。
- 推荐网络例句
-
Plunder melds and run with this jewel!
掠夺melds和运行与此宝石!
-
My dream is to be a crazy growing tree and extend at the edge between the city and the forest.
此刻,也许正是在通往天国的路上,我体验着这白色的晕旋。
-
When you click Save, you save the file to the host′s hard disk or server, not to your own machine.
单击"保存"会将文件保存到主持人的硬盘或服务器上,而不是您自己的计算机上。