单位球面
- 与 单位球面 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The zonal translation networks on the unit sphere is constructed with the best approximation of spherical harmonic polynomials and the Riesz means. The Jackson theorem of approximation by such kind of zonal translation is established.
借助于球调和多项式的最佳逼近多项式和Riesz平均构造出了单位球面S上的带形平移网络,并建立了球面带形平移网络对LS(上标 q中函数一致逼近的Jackson型定理。
-
Feasible region of unit-sphere was defined by standard if angle between normals and stamping direction was less than 90°.
以冲压方向与网格法线夹角不大于90°为冲压方向可行的判据,确定在单位球面上的冲压方向可行域。
-
In this paper, we mainly study the gap of the second fundamental form of hypersurface with constant mean curvature in the unit sphere.
本文主要研究了单位球面内常平均曲率超曲面的第二基本形式模长平方的间隙性。
-
On the product of unit spheres,we give a kind of natural embeddings from the product unit spheres to the unit sphere in which the product of unit spheres can be viewed as a hypersurface.
第一个是在乘积单位球面上,我们给出自然的由乘积单位球面到高一维球面的嵌入映射,然后考虑了在乘积单位球面上预给定Gauss-Kronecker曲率后,我们所考虑的嵌入的存在性。
-
Simons [30] proved the non-existence theorem for stable integral current in acompact Riemannian submanifold isometrically immersed into a unit sphere andvanishing theorem for homology groups. In 1984, Y. L. Xin [47] generalized theLawson-Simon\'s nonexistence theorem for stable integral current and vanishingtheorem for homology groups to the case of compact submanifolds in Euclideanspace, and gave several important applications.
Simons运用Federer-Fleming存在性定理[19]和几何测度论中变分技巧证明了单位球面中紧致黎曼子流形上稳定积分流的不存在性定理和同调群消没定理[30]。1984年,忻元龙将Lawson-Simons稳定积分流的不存在性定理和同调群消没定理拓广到了欧氏空间中紧致子流形的情形,并给出了若干重要的应用[47]。1997年,K。
-
Simons [30] proved the non-existence theorem for stable integral current in acompact Riemannian submanifold isometrically immersed into a unit sphere andvanishing theorem for homology groups. In 1984, Y. L. Xin [47] generalized theLawson-Simons nonexistence theorem for stable integral current and vanishingtheorem for homology groups to the case of compact submanifolds in Euclideanspace, and gave several important applications.
Simons运用Federer-Fleming存在性定理[19]和几何测度论中变分技巧证明了单位球面中紧致黎曼子流形上稳定积分流的不存在性定理和同调群消没定理[30]。1984年,忻元龙将Lawson-Simons稳定积分流的不存在性定理和同调群消没定理拓广到了欧氏空间中紧致子流形的情形,并给出了若干重要的应用[47]。1997年,K。
-
In chapter 1, we introduce the definitions of area integral S_β and invariant g-function on unit sphere, and study their boundedness on BMO and non-isotropic Lipschitz spaces.
共分三章,第一章引进了C~n单位球面上的面积积分和不变g函数,研究它们在BMO空间以及non-isotropic Lipschitz空间上的有界性问题。
-
Such a problem need us to know whether an onto isometry between the unit spheres of Banach spaces has an linear extension to the whole space?
它是问定义在两个Banach空间单位球面到单位球面上的等距算子是否可以线性等距延拓到整个空间上?
-
Let x be an immersion of a compact Willmore surface M into the n-dimensional unit sphere Sn. In this thesis we first consider the Willmore surfaces in the unit 3-sphere, and establish an integral inequality for the square of the length of the trace free part of the second fundamental form and the mean curvature.
令x是一个从紧致威尔摩曲面M到n 维单位球面Sn的浸入,在本论文中我们首先考虑3维单位球面中的威尔摩曲面并建立一个包含第二基本型式迹为零部份的张量长度平方与平均曲率之积分不等式。
-
As for the case n = 3; we also characterize the totallyumbilical spheres and the Veronese surface by a pinching condition for the case n≧4: Analogous to the case n = 3; we then introduce a conformal invariant quantity, and
我们同样考虑n维单位球面中的威尔摩曲面,并藉著某些夹挤的条件对全脐球面与Veronese曲面进行分类。
- 推荐网络例句
-
On the other hand, the more important thing is because the urban housing is a kind of heterogeneity products.
另一方面,更重要的是由于城市住房是一种异质性产品。
-
Climate histogram is the fall that collects place measure calm value, cent serves as cross axle for a few equal interval, the area that the frequency that the value appears according to place is accumulated and becomes will be determined inside each interval, discharge the graph that rise with post, also be called histogram.
气候直方图是将所收集的降水量测定值,分为几个相等的区间作为横轴,并将各区间内所测定值依所出现的次数累积而成的面积,用柱子排起来的图形,也叫做柱状图。
-
You rap, you know we are not so good at rapping, huh?
你唱吧,你也知道我们并不那么擅长说唱,对吧?