单位球面
- 与 单位球面 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The zonal translation networks on the unit sphere is constructed with the best approximation of spherical harmonic polynomials and the Riesz means. The Jackson theorem of approximation by such kind of zonal translation is established.
借助于球调和多项式的最佳逼近多项式和Riesz平均构造出了单位球面S上的带形平移网络,并建立了球面带形平移网络对LS(上标 q中函数一致逼近的Jackson型定理。
-
Feasible region of unit-sphere was defined by standard if angle between normals and stamping direction was less than 90°.
以冲压方向与网格法线夹角不大于90°为冲压方向可行的判据,确定在单位球面上的冲压方向可行域。
-
In this paper, we mainly study the gap of the second fundamental form of hypersurface with constant mean curvature in the unit sphere.
本文主要研究了单位球面内常平均曲率超曲面的第二基本形式模长平方的间隙性。
-
On the product of unit spheres,we give a kind of natural embeddings from the product unit spheres to the unit sphere in which the product of unit spheres can be viewed as a hypersurface.
第一个是在乘积单位球面上,我们给出自然的由乘积单位球面到高一维球面的嵌入映射,然后考虑了在乘积单位球面上预给定Gauss-Kronecker曲率后,我们所考虑的嵌入的存在性。
-
Simons [30] proved the non-existence theorem for stable integral current in acompact Riemannian submanifold isometrically immersed into a unit sphere andvanishing theorem for homology groups. In 1984, Y. L. Xin [47] generalized theLawson-Simon\'s nonexistence theorem for stable integral current and vanishingtheorem for homology groups to the case of compact submanifolds in Euclideanspace, and gave several important applications.
Simons运用Federer-Fleming存在性定理[19]和几何测度论中变分技巧证明了单位球面中紧致黎曼子流形上稳定积分流的不存在性定理和同调群消没定理[30]。1984年,忻元龙将Lawson-Simons稳定积分流的不存在性定理和同调群消没定理拓广到了欧氏空间中紧致子流形的情形,并给出了若干重要的应用[47]。1997年,K。
-
Simons [30] proved the non-existence theorem for stable integral current in acompact Riemannian submanifold isometrically immersed into a unit sphere andvanishing theorem for homology groups. In 1984, Y. L. Xin [47] generalized theLawson-Simons nonexistence theorem for stable integral current and vanishingtheorem for homology groups to the case of compact submanifolds in Euclideanspace, and gave several important applications.
Simons运用Federer-Fleming存在性定理[19]和几何测度论中变分技巧证明了单位球面中紧致黎曼子流形上稳定积分流的不存在性定理和同调群消没定理[30]。1984年,忻元龙将Lawson-Simons稳定积分流的不存在性定理和同调群消没定理拓广到了欧氏空间中紧致子流形的情形,并给出了若干重要的应用[47]。1997年,K。
-
In chapter 1, we introduce the definitions of area integral S_β and invariant g-function on unit sphere, and study their boundedness on BMO and non-isotropic Lipschitz spaces.
共分三章,第一章引进了C~n单位球面上的面积积分和不变g函数,研究它们在BMO空间以及non-isotropic Lipschitz空间上的有界性问题。
-
Such a problem need us to know whether an onto isometry between the unit spheres of Banach spaces has an linear extension to the whole space?
它是问定义在两个Banach空间单位球面到单位球面上的等距算子是否可以线性等距延拓到整个空间上?
-
Let x be an immersion of a compact Willmore surface M into the n-dimensional unit sphere Sn. In this thesis we first consider the Willmore surfaces in the unit 3-sphere, and establish an integral inequality for the square of the length of the trace free part of the second fundamental form and the mean curvature.
令x是一个从紧致威尔摩曲面M到n 维单位球面Sn的浸入,在本论文中我们首先考虑3维单位球面中的威尔摩曲面并建立一个包含第二基本型式迹为零部份的张量长度平方与平均曲率之积分不等式。
-
As for the case n = 3; we also characterize the totallyumbilical spheres and the Veronese surface by a pinching condition for the case n≧4: Analogous to the case n = 3; we then introduce a conformal invariant quantity, and
我们同样考虑n维单位球面中的威尔摩曲面,并藉著某些夹挤的条件对全脐球面与Veronese曲面进行分类。
- 推荐网络例句
-
With Death guitarist Schuldiner adopting vocal duties, the band made a major impact on the scene.
随着死亡的吉他手Schuldiner接受主唱的职务,乐队在现实中树立了重要的影响。
-
But he could still end up breakfasting on Swiss-government issue muesli because all six are accused of nicking around 45 million pounds they should have paid to FIFA.
不过他最后仍有可能沦为瑞士政府&议事餐桌&上的一道早餐,因为这所有六个人都被指控把本应支付给国际足联的大约4500万英镑骗了个精光。
-
Closes the eye, the deep breathing, all no longer are the dreams as if......
关闭眼睛,深呼吸,一切不再是梦想,犹如。。。。。。