单位圆
- 与 单位圆 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In the second chapter, we prove that if a bounded operator S satisfies some integrab...
第二章证明了在单位圆盘D上的加权Bergman空间A~p
-
The relationship between PID parameter and the root of the characteristic equation of the closed loop control system has been found out directly.
本文直接找出PID参数与闭环控制系统的特征方程的根之间的关系,只要使特征方程的根在z平面的单位圆内任意取值,然后再求出相应的PID参数,则闭环控制系统必然是稳定的。
-
As long as the root of the characteristic equation is within the unit circle of z-plane and the corresponding PID parameter is got, the closed loop control system is sure to be stable. Although the root of the characteristic equation can vary within the unit circle of z-plane,different value may affect the control property differently.
本文所采用的这种确定PID参数的方法,虽然可以使特征方程的根在z平面的单位圆内任意取值,但各种取值情况对变风量空调系统的控制品质的影响却不同,因此,要对各种特征方程的根的取值情况进行寻优,本文采用遗传算法对特征方程的根进行寻优,从而使控制器的参数得以优化。
-
In this paper, we use the Pluricomplex Green function to investigate the iterative poperties of holomorphic self-maps, which are defined on the unit disk, the unit ball, the bounded strongly convex domain and the bidisc.
基于该思路,本文就利用多复Green函数,在分别研究了单位圆、超球、有界强凸域以及双圆柱上全纯自映射迭代的基础上,进一步研究了一特殊非凸域-Hartogs三角形上全纯自映射迭代的性质。
-
In this paper we define the concept of Projective Blaschke manifolds and extend the theory of equiaffine differential geometry to the projective Blaschke manifolds. We prved that if M be a complete projective Blaschke n-sphere and its universal covering manifold is isometric to a complete (n+1) dimensional parabolic, elliptic or hyperbolic affine hypersphere, then M is a quotient space of E^n, S^n or D^n by a isometric subgroup of its corresponding spaces.
在这篇文章中我们定义了射影Blaschke流形的概念,将等仿射微分几何的理论推广到了射影Blaschke流形,并证明:如果n维完备射影Blaschke 超球面 M 的通用覆盖流形分别是完备的抛物型、椭圆型或双曲型仿射球,则M分别是n维欧氏空间、n维超球面或n维单位圆盘关于各自空间的一个等距离散子群的商,从而对完备射影Blaschke 超球面进行了分类。
-
This thesis is devoted to the study of composition operators on some spaces of analytic functions defined on the unit disk D in the complex plane. They involve Hardy space, weighted Bergman spaces, Dirichlet space, Nevanlinna-type classes, etc.
本文系统地研究了定义在复平面C中的单位圆盘D上的几类解析函数空间上的复合算子,涉及的空间包括Hardy空间、加权Bergman空间、Dirichlet空间、Nevanlinna类等等。
-
The stability of the discrete system demand all poles of the closed-loop system should be within the unit circle.
离散系统的稳定性要求闭环系统的所有极点必须在单位圆之内。
-
Baernstein[2] gave the conclusion by using Koebe function as the extremal function , Glenn Schober[6] studied the classes such as S, P, K, S* of H and represented these functions with integral formulations. Wang Jian[3] and others investigated the integral mean values. Our work is continuation of their work.
Baernstein首先在单位圆上讨论给出了以Koebe函数作为极值函数的结论,Glenn Schober对H中一些函数子类如S、P、K、S~*等作了研究,将这些子类上的函数用积分表达出来,王键结合Baernstein~*函数的定义及Glenn Schober的结论,定义了对称集的概念并得出了一些函数类在其上的积分平均。
-
In order to develop this local property,this paper presents a method,which uses Fourier Series to approximate the boundary shapes of the shafts with periodic boundary of cross section,and uses the conformal mapping in Theory of Function of a Complex Variable to make the complicated boundary shapes of the shafts map a unit circle.Thus elastic theory can analyze...
本文提出一种方法,其实质是:采用富里埃级数来逼近横截面呈周期性变化边界的轴类零件的边界形状;并应用复变函数论中保角映射原理,将零件复杂的边界形状映像成单位圆,从而使弹性理论可以分析和计算复杂边界轴类零件的应力场;再通过留数的求解实现保角映射的反变换。
-
The method ofsolution for linear discrete Hilbert boundary value problem on the unit circleis illustrated and it is proved that,in case of the index〓,the solutionsof the discrete Hilbert problems are stongly convergent to the solution of theoriginal problem.
我们给出了单位圆上线性离散Hilbert边值问题的解法,并且证明了当问题的指标k=0时离散Hilbert边值问题的解强收敛于原Hilbert边值问题的解。
- 推荐网络例句
-
With Death guitarist Schuldiner adopting vocal duties, the band made a major impact on the scene.
随着死亡的吉他手Schuldiner接受主唱的职务,乐队在现实中树立了重要的影响。
-
But he could still end up breakfasting on Swiss-government issue muesli because all six are accused of nicking around 45 million pounds they should have paid to FIFA.
不过他最后仍有可能沦为瑞士政府&议事餐桌&上的一道早餐,因为这所有六个人都被指控把本应支付给国际足联的大约4500万英镑骗了个精光。
-
Closes the eye, the deep breathing, all no longer are the dreams as if......
关闭眼睛,深呼吸,一切不再是梦想,犹如。。。。。。