函数的积分
- 与 函数的积分 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Course Content:The main part of this course is about infinitesimal calculus and ordinary differential equations,including :functions and limits,derivative and differential integral and their application,differential methods of function of several variables and its application,heavy integral,curve integral,camber integral,infinite progression and differential equations.
课程内容:学科教学法与CAI研究与实践是师范计算机专业教学系统的重要组成部分,学科教学法与CAI研究与实践课程是计算机科学教育的主要内容。通过本课程的学习使学生掌握现代学科教学法与CAI研究与实践的基本概念,基本原理和基本方法;能设计并使用所学的教学理论进行中学信息技术课程的教学设计,试讲,试教。课程内容:以微积分学和常微分方程为主干,介绍函数与极限,导数与微分,中值定理。不定积分,定积分及其应用,多元函数微分法及其应用,重积分,曲线积分与曲面积分,无穷级数及微分方程等。
-
The course contents include: basic concept of Mathematics, functions, linear functions, limits, differentiation, applications of the derivative, antidifferentiation, indefinite integral
课程内容包括数学概念的复习,函数,斜率,极限,导函数,不定积分,定积分,对数函数与指数函数的微分与积分等单元的介绍与应用。","
-
This course mainly contents real number muster and function, limit of number sequence, limit of function, continuity, derived number and differential, differential mean value theorem and its application, completeness of real number, integral, series(including positive series and Fourier series), multiple- differential, double integral, integral with parameter, curve integral, camber integral and so on.
理解和掌握《数学分析》的概念、理论和方法,对于学生加深理解数学的基本思想和方法,培养抽象思维能力和逻辑思维能力,提高数学素养具有重要的意义。主要内容包括:实数集和函数,数列极限,函数极限,连续性,导数和微分,微分中值定理及其应用,实数完备性,积分、级数(包括幂级数、Fourier级数)、多元微分学、重积分、含参变量积分、曲线积分、曲面积分等。
-
Firstly,on the basis of the generalized fuzzy integral,which is defined by nonnegative measurable functions. Through introducing T-norm operator,we extend the integrand functions to the fuzzy valued function and give the definition of so-called T-fuzzy valued integral.
首先,在针对非负可测函数所定义的广义模糊积分的基础上,通过引入T—模算子,将被积函数推广到取值于模糊数的模糊值函数,给出了所谓的T—模糊值积分定义,获得了这种积分的一些基本性质。
-
Limits, Continuity, Derivatives, and Integration of Single Variable, Integration Techniques, Applications of Derivatives and Integrals, Infinite Sequences and Series, Multivariable Function and Their Derivative, Multiple Integrals, Integration in Vector Fields.
课程内容:单变数函数之极限、连续、微分、积分,积分技巧,微分与积分的应用,无穷数列与级数,多变数函数之偏微分、可微性,多重积分,极值问题,向量场积分。
-
Results show that radial basis function and point interpolation methods possess Kronecker Delta function property, but the robustness is poor in some cases; the MLS approximation function does not possess Kronecker Delta function property, but it has good robustness. Differences among the three discretization schemes of meshless method are as follows:the collocation method requires no numerical integration and very little computational time while its robustness is poor; Galerkin method is not a truly meshless method due to the background meshes required for integration; the Petrov-Galerkin method is a truly meshless method and need numerical integration in each sub-domain, so it needs more computational time.
分析结果显示:径向基函数和点插值法均具有d 函数属性,但计算稳定性差;移动最小二乘近似函数不具有d 函数属性,但计算比较稳定;无网格方法中的3种离散方法不同之处在于:配点法不需要积分,计算量小,计算稳定性差;Galerkin方法需要借助背景网格进行积分,它不是真正的无网格方法;Petrov-Galerkin方法,是一种真正的无网格方法,它需要对每个子域进行积分,计算工作量较大。
-
In recent years, Feng Kang has advanced a more natural and direct redu-ction, i. e. the reduction via Green's formula and Green's function.
近年来冯康又提出一种更自然而直接的归化,即从Green公式及Green函数出发将微分方程边值问题化为边界上的含有广义函数意义下发散积分有限部分的奇异积分方程,这种归化在各种边界归化中占有特殊地位,被称为正则边界归化,本文将这一理论应用于重调和椭圆边值问题,研究了其正则归化的性质,并通过利用Green函数、Fourier分析及复变函数论方法等不同途径求出了在上半平面、单位圆内部、单位圆外部三种区域的Poisson积分公式及正则积分方程,其离散化可用于实际计算。
-
Dynamic reliability under Littlewood-Paley wavelet is the biggest, dynamic reliability under modified meyerwavelet and harmonic wavelet are close. Analyzing the dynamic reliability of structure under odd exponent wavelet is very simple, it doesnt calculate Power Spectral Density function integral, it is only to calculate the square of displacement standard deviation and the square of velocity, then the dynamic reliability of structure can be concluded by max distribution. In addition the effects of upper limit is considered, when upper limit is smaller, the dynamic reliability of structure is less, that is, the damage possibility is bigger.
通过结构地震反应在小波基下的动力可靠性分析说明:无论是单自由度还是多自由度从理论上推导在这四种小波下的结构动力可靠性是可行的,而且考虑的结构地震反应都是非平稳的高斯过程,方法实现也比较容易;在Littlewood—Paley小波基下求得的结构的动力可靠度比较大,由改造的meyer小波和谐波小波求得的动力可靠度略有差异;单边指数小波下的结构动力可靠性分析非常简单,不用求功率谱函数来积分,只需求得结构地震反应的位移方差,速度方差,利用最大值分布公式就可得到结构的动力可靠时程;另外也考虑了超越界限对结构动力可靠度的影响,超越界限越小,结构的动力可靠度越小,即破坏概率越大。
-
Golikov as the general and single-valued criterion for evaluating the acoustics of rooms and auditori- ums have been critically examined,with detailed discussionsconcerning:(1) the empirical foundation of the articulation-Q"functional relationship A= f,(2)the derivation of the"particular criterion"or the optimum re- verberation condition form Q",(3)the meaning of a time integration of the "noise-interference factoras viewed from the theorey of auditory perce- ption...
主要内容有:(1)以在不同的条件(如语言、测试人员、宣读方式以及声学场所等)之下的清晰度测验结果来验证 A=f函数的适用性,(2)判断了从Q&来推求以体积为参数的最佳混响时间的可能性,(3),从听觉理论来讨论&混响干扰因子&对时间积分的意义,(4)讨论了原作者对&噪声因子&的看法,指出了&噪声因子&定义中的一些值得存疑之处。
-
We used different methods to calculate luminosity in order to assure its reliability. Structure function method is adopted to derive the radiatively corrected cross section whose accuracy is up to 1%. The corrections from vacuum polarization and effect of energy spread are also studied. The final analytical approximation formulaes of the observed cross sections are worked out. Different fitting methods are carried out to fit the resonances according to different requests.
模拟的分布图的仔细对比,并兼顾实验的要求,得到每种事例对应的选择条件,特别是在处理积分亮度时,更是采用了不同的方法,以保证亮度计算的可靠性;采用结构函数的方法推导出截面的辐射修正公式,精确度达到了1%的水平,研究了真空极化给拟合公式带来的修正,并考虑了束流能散的影响,计算出最终的观测截面的解析近似式;对于三个共振态的拟合,针对不同的要求,采用了不同的拟合方法;同时在M.C。
- 推荐网络例句
-
The concept of equivalent rotationally rigidity is offered and the formula of rotationally rigidity is obtained.
主要做了如下几个方面的工作:对伸臂位于顶部的单层框架—筒体模型进行分析,提出了等效转动约束的概念和转动约束刚度的表达式。
-
Male cats normally do not need aftercare with the exception of the night after the anesthetic.
男猫通常不需要善后除了晚上的麻醉。
-
Its advantage is that it can be used in smaller units.
其优点在于可以在较小的单位中应用。