共轭梯度法
- 与 共轭梯度法 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The conjugate gradient training method is studied to speed up the training rate in this research.
本研究的目的为使用共轭梯度法作为训练网路参数的方法,希望能增快学习速率。
-
VC prepared by a conjugate gradient method procedures, head to the counting function is determined.
用VC编写的一个共轭梯度法的程序,目票函数是给定的。
-
Based on the genetic algorithm and the method of conjugate gradient, a method for optimizing the model parameters is developed.
基于遗传算法和共轭梯度法确定最优化模型参数,利用该模型拟合了2种硫化胶的应力松弛系数和永久变形率随时间变化的数据。
-
Now, the rapid development of computer and occurrence of a great deal of large-scale optimization problems make the researches in conjugate gradient method revive.
近年来,随着计算机的飞速发展和实际问题中大规模优化问题的涌现,寻找快速有效的共轭梯度法成为了学者们研究的热门方向之一。
-
Some methods are direct in principle but are usually used as though they were not, e.g. GMRES and the conjugate gradient method .
有些方法是直接在原则上,但通常用作但他们没有,例如: GMRES方法和共轭梯度法。
-
According to the filter matrix particularity, the filter equation was solved by using conjugate gradient method.
并根据滤波矩阵的特殊性,釆用共轭梯度法求解滤波方程。
-
In this dissertation, we presented the global convergence properties of nonlinear conjugate gradient methods without line search and with strong Wolfe conditions, Goldstein inexact line search.
本文给出了无约束最优化算法—非线性共轭梯度法在不需线搜索和用强Wolfe条件下以及用Goldstein非精确线搜索产生搜索步长情况下的全局收敛性证明。
-
Nonlinear Conjugate Gradient Method; Line Search; Sufficient Descent Direction; Global Convergence
基础科学,数学,运筹学非线性共轭梯度法;线性搜索;充分下降方向;全局收敛性
-
In the first section, we introduce the development of the conjugate gradient methods.
在第一部分中我们介绍了共轭梯度法的发展过程及其研究现状。
-
In comparison with classic conjugate gradient methods, the decrease of objective function is contained in the two new methods.
与经典的共轭梯度法的区别是新方法中体现了函数值下降量的信息。
- 推荐网络例句
-
Plunder melds and run with this jewel!
掠夺melds和运行与此宝石!
-
My dream is to be a crazy growing tree and extend at the edge between the city and the forest.
此刻,也许正是在通往天国的路上,我体验着这白色的晕旋。
-
When you click Save, you save the file to the host′s hard disk or server, not to your own machine.
单击"保存"会将文件保存到主持人的硬盘或服务器上,而不是您自己的计算机上。