共形的
- 与 共形的 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Deficiently, only ordinary antennas are studied here, circular array and cylindrical array, for example. Farther study about complex and anomalous conformal antennas is expected.
不过,本文中只对简单形式的共形阵天线,如圆形阵、圆柱面阵天线进行了分析,复杂的不规则的共形阵天线的情况还有待于进行进一步的研究。
-
In this paper, we introduces discrete Ricci flow as an efficient and powerful mathematics tools, by which we can computer conformal metric and conformal structure of the surface.
本文引入离散的Ricci流方程这个强大的数学工具,成功地计算出了曲面的共形度量和共形结构。
-
In this paper, taking the equdistant curve of short spoke epicycloid as original tooth profiles, the conjugate internal gear tooth profiles (quasi-cycloid) and the pinion cutter tooth for cutting the internal gear are obtained.
本文以短幅外摆线的等距线为原始齿廓,求取了与之共轭的内齿轮齿形及切削这种内齿轮的插齿刀齿形,并寻求了用三圆弧替代插齿刀齿形的方法。
-
In this paper, the author estimated the module of quasiconformal mapping in curved fan, by the expression of local maximal dilatation function of quasiconformal mapping, Riemann′ s existence theorem and extremal length method, the author obtained a result of moduler deviation on curved fan.
本文对曲边扇形内的拟共形映照的模进行估计。借助拟共形映照的局部最大伸张函数来表达,利用黎曼存在定理和极值长度方法,得到关于曲边扇形的一个模偏差定理。
-
Extremal mappings have been one of the main topics in the theory of quasiconformal mappings, n the section 4, we consider the extremal mappings on the surface Rwhere every Ri is a hyperbolic Riemann surface, Ri Rj =,i j,I is a non-empty indexset.
拟共形映射的极值问题是拟共形映射理论中的又一重要课题,在文章的第四章中,我们将考虑曲面R=U R_i i∈I上的极值问题,其中每个R为双曲Riemman曲面,R_i∩R_j=φ,i≠j,I为非空指标集。
-
We generalize the concept of the set of variability defined in the unit diskby K.Strebel to general Riemann surfaces and prove that the set of variablity withrespect to the modulo homotopic class of a quasiconformal mapping between twoRiemann surfaces is a compact and connected subset.Consequently the num-ber of the extremal mappings in the modulo homotopic class of a quasiconformalmapping between two general Riemann surfaces is either one or infinity.
Strebel的定义在单位圆上的可变性集合的概念推广到一般Riemann曲面上去,并且证明了Riemann曲面之间的拟共形映射的模边同伦类所确定的可变性集合是一个连通的紧子集,从而得出一般Riemann曲面之间拟共形映射的模边同伦类中的极值映射要么唯一,要么有无穷多个。
-
The compact minimal submanifold of a Locally symmetric and conformally flat Riemannian manifold are studied, and obtain the following intrinsic rigidity theorem.
研究了局部对称共形平坦黎曼流形的紧致极小子流形,即设M是局部对称共形平坦黎曼流形的n维紧致极小子流形,得到了这种子流形的若干内蕴刚性积分不等式,给出了流形全测地的限制条
-
This shows that the Riemann mapping theorem of n-dimensioanl quasiconformal mappings holds in the class of bounded and convex domains in ■~n.
证明n维空间中的有界凸域D能被拟共形映射到n维单位球B~n(0,1),即D是拟球,从而说明拟共形映射中的黎曼定理在n维空间中的有界凸域类中是成立的。
-
We introduce the basic theory of quasiconformal mappings of the development and the research situation of the theory of quasiconformal mappings, the theory of Schwarz derivatives and the inner radius of univalence.
在这一章中,我们简单介绍了拟共形映照的基本理论,回顾了拟共形映照及Schwarz导数理论的发展及区域单叶性内径的研究现状,并简要的介绍了作者的主要工作。
-
It will analyze the first and the third order performance of conformal dome at first, and then go to study the application of diffractive elements in this kind of optical system, finally proposes a way to correct the variable aberrations by controlling the tilt and decenter of an symmetrical corrector. The results of simulation show that ways proposed above have improved the conformal dome's performance a lot.
为了将共形光学系统更好的应用于实际,本论文在系统的设计方法上做了多方面的研究:首先在对共形整流罩的一阶和三阶特性深入分析的基础上,研究了衍射元件在该系统中的应用潜力,然后提出了利用倾斜偏心元件进行动态像差补偿的设计方案,并用软件对上述设计方案进行了模拟验证。
- 推荐网络例句
-
Finally, according to market conditions and market products this article paper analyzes the trends in the development of camera technology, and designs a color night vision camera.
最后根据市场情况和市面上产品的情况分析了摄像机技术的发展趋势,并设计了一款彩色夜视摄像机。
-
Only person height weeds and the fierce looks stone idles were there.
只有半人深的荒草和龇牙咧嘴的神像。
-
This dramatic range, steeper than the Himalayas, is the upturned rim of the eastern edge of Tibet, a plateau that has risen to 5 km in response to the slow but un stoppable collision of India with Asia that began about 55 million years ago and which continues unabated today.
这一引人注目的地域范围,比喜马拉雅山更加陡峭,是处于西藏东部边缘的朝上翻的边框地带。响应启始于约5500万年前的、缓慢的但却不可阻挡的印度与亚洲地壳板块碰撞,高原已上升至五千米,这种碰撞持续至今,毫无衰退。