公式
- 与 公式 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
If we can get, a multiparameter asymptotic expansion of double-quadratic isoparametric finite element errors on coarse grid with respect to independent grid setps , we can get several splitting extrapolation formulas.
只要我们对粗网格上的双二次等参有限元的误差可以证明对独立步长有多变量渐近展开式,我们就能得到分裂外推公式。
-
The uniformly valid asymptotic expansion of the solution to a class of time delay differential equations with damping term and general forcing term was obtained and a simple analytic approximate expression for the resonance solution was given.
对于一类带阻尼和一般力的时滞微分方程问题求得一致有效渐近展开式,给出了共振解筒洁的近似解析表达公式。
-
From (8) we have the best asymptotic formula
这公式对他们有所帮助。
-
These include an asymptotic formula in a neighborhood of the origin,a result which as far as we are aware has not yet been obtained previously.
其中有一个在原点的领域附近的渐近公式。据我们所知,这个结果之前还没有被得到过。
-
Some accurate asymptotic formula for it was proven.
获得了关于这个数论函数的一些较精确的渐近公式。
-
Studying the mean value of two Smarandache LCM Functions by using elementary and analytic method,and giving their asymptotic formula.
利用初等方法研究了两个包含Smarandache LCM函数的均值性质,并给出其渐近公式。
-
We studied the asymptotic properties of the integer part of the k-th root positive integer and gave an interesting asymptotic formula.
研究了一个关于正整数κ次根的整数部分序列的均值,并利用初等的方法得到了一个有趣的渐近公式: 3。
-
By using the estimate for trigonometric sums and the esitimate for general Kloostermann sums, we study the asymptotic properties of N, and give a sharper asymptotic formula.
本文的主要目的是利用三角和估计及广义Kloostermann和估计研究了N的渐近性质,并得到一个较精确的渐近公式。
-
In the forth Chapter, we study the mean value of properties of Smarandache factorial function and it s mean value, using analytic methods give several interesting asymptotic formula for the reciprocal of S_k function.
在第四章中,本文研究了Smarandache高阶乘函数的性质及其均值估计问题,利用解析的方法得到一系列的渐进公式。
-
Using the elementary methods, we studied the hybrid mean value involving Smarandache function and the least prime divisor function, and gave an asymptotic formula.
用初等的方法研究了一个Smarandache函数与最小素因子的均值,并得到一个渐近公式。
- 推荐网络例句
-
Plunder melds and run with this jewel!
掠夺melds和运行与此宝石!
-
My dream is to be a crazy growing tree and extend at the edge between the city and the forest.
此刻,也许正是在通往天国的路上,我体验着这白色的晕旋。
-
When you click Save, you save the file to the host′s hard disk or server, not to your own machine.
单击"保存"会将文件保存到主持人的硬盘或服务器上,而不是您自己的计算机上。