代数多项式
- 与 代数多项式 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.
文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按"序"最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。
-
Using the substitution-elimination method affine algebraic variety can be resolved to pure d-dimensional subvariety and expressed by an algebraic hypersurface on d+1-dimensional space with a sequence of elimination-polynomial systems. All 0-dimensional solution can be found, too.
利用变换消元法可以把代数簇分解成纯d维的子簇,并把代数簇表示为d+1维子空间上的超曲面形式和一系列的消元多项式组,且能求出全部孤立解,同时给出了算法及其在多项式因式分解中的应用。
-
We posed the concept of sufficient intersection about s(1≤s≤n) algebraic hypersurfaces in n-dimensional space and proved the dimension of polynomial space Pm(which denotes the space of all multivariate polynomials of total degree≤m) on the algebraic manifold S=s(f1,…, fs) where f1(X=0,…, f s=0denote s algebraic hypersurfaces of sufficient intersection, then gave a convenient expression for dimension calculation by using the backw ard difference operator.
给出了n维空间中s(1≤s≤n)个代数超曲面充分相交的概念,证明了n元m次多项式空间Pm在充分相交的代数流形S=s(f1,…, fs)(f1=0,…, fs=0表示s个代数超曲面)上的维数,并利用倒差分算子给出一个方便计算的表达式;构造了沿代数流形上插值适定结点组的叠加插值法;证明了在充分相交的代数流形上任意次插值适定结点组的存在性;给出代数流形上插值适定结点组的性质和判定条件。
-
And certain q-polynomial coalgebras arisesnaturally,which is a q-deformation of classical polynomial coalgebra.
并且我们自然地引出了一类q-多项式余代数,它是经典多项式余代数的变形。
-
In order to solve the problem,We proposed a simple formula for computing paraxial travel time of single-way wave operator. The formula is based on the forward and inverse transform between time-space domain to frequency-wavenumber domain and from vector field to exponential manifold. The travel time are expressed as polynomials of the horizontal offset between the two points, and the single-square-root operator in frequency-wavenumber domain are expressed as polynomials of wavenumber. Coefficients of travel time polynomials and that of single-square-root operator are related each other and calculated by Lie algebraic integrand, exponential map and the saddle-point method.
针对此,基于时间空间域到频率波数域和向量场到指数流形上的正反变换,提出了计算单程波算子旁轴走时的简便公式,将走时表示成空间变量(地面点到地下相点的水平距离)的多项式,将频率波数域单平方根算子表示成波数的多项式,运用Lie代数积分、指数映射和鞍点法将走时多项式的系数与单平方根算子的系数联系起来,运用单平方根算子的系数计算走时多项式的系数。
-
By Llibre's algebraic invariant theory, at first on the basis of classification for quadric and quadric homogeneous binary polynomial, the plane linear and cubic homogeneous polynomial differential systems are classified.
利用Llibre的代数不变式理论,首先由二元二次和二元四次多项式的分类结果,对一次和三次齐次多项式微分系统进行代数分类,同时补充了已有结果中出现的漏洞;其次,由称共变张量空间的性质,对缺二次项的三次微分系统在保证轨线走向不变的前提下进行代数分类,使分类后同类系统的示性多项式有相同零点;最后通过讨论一类简单系统的有界性说明了分类的方便方处。
-
Content of the course consists of:(1)Basic Theories of Polynomials ;(2)Linear Algebra: topics on basic matrix theory, determinant, system of linear equations, vector space, linear transformation, eigenvalue problems, inner product and Euclidean space , and quadratic form etc.;(3) Analytic Geometry: topics on algebraic operations of vectors, coordinates, lines and planes, curves and curved surfaces, etc.
学习本课程后,学生应学会用线性空间与线性变换的观点处理包括线性代数方程组在内的有关理论与实际问题;学会熟练地运用矩阵工具;本课程还学习基本的多项式知识和空间解析几何的基本知识。课程内容包括几个主要部分:(1)多项式代数;(2)线性代数:矩阵,行列式,线性代数方程组,向量空间与线性变换理论,特征值问题,欧氏空间理论,二次型等;(3)解析几何:几何空间向量代数,通过建立坐标系以及借助向量方法研究空间平面与直线及点﹑线﹑面的相互关系,借助曲面方程研究空间曲面,尤其是柱面,锥面,旋转面和二次曲面以及曲面的交线等。
-
The multivariate polynomial interpolation problem is a classical mathematical problem that is widely used in many fields, such as multivariate function list, surface design and finite element method. In recent years, multivariate polynomial interpolation has been focused by many people, of which the geometric topological struction of sets of interpolation nodes is also much concerned by us.
多元多项式插值问题是一个十分具有研究意义和实际应用价值的数学问题,它广泛应用于多元函数列表,以及曲面的外形设计和有限元法等诸多领域,近年来多元多项式插值越来越受到人们的广泛关注,其中有关插值结点组的几何拓扑结构问题也是人们十分关注的内容。1998年,梁学章和吕春梅在文献[2]中借助代数几何中的有关理论,进一步讨论了沿无重复分量平面代数曲线上的Lagrange插值问题,并应用Cayley ?
-
This book reviews the many areas of numerical analysis, including the configuration polynomial, finite difference, factorial polynomials, summation, Newton formula, operator and configuration polynomial, Cheung section, close polynomials, TaylM more item type, interpolation, numerical differentiation, numerical integration, and with the series, differential equations, differential equations, least squares polynomial approximation, minimax polynomial approximation, rational function approximation, triangular approximation, non-linear algebra, linear equations, linear programming, boundary value problems, MonteCarIo methods and so on.
本书综述了数值分析领域的诸多内容,包括配置多项式、有限差分、阶乘多项式、求和法、Newton公式、算子与配置多项式、祥条、密切多项式、TaylM多项式、插值、数值微分、数值积分、和与级数、差分方程、微分方程、最小二乘多项式逼近、极小化极大多项式逼近、有理函数逼近、三角逼近、非线性代数、线性方程组、线性规划、边值问题、MonteCarIo方法等内容。本书的特色主要表现在利用例题及大量详细的题解来透彻地阐明所述内容的内涵,同时附有大量的补充题以便读者进一步巩固和深化从书中获得的数值分析知识。
-
First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.
文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按&序&最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。
- 推荐网络例句
-
Breath, muscle contraction of the buttocks; arch body, as far as possible to hold his head, right leg straight towards the ceiling (peg-leg knee in order to avoid muscle tension).
呼气,收缩臀部肌肉;拱起身体,尽量抬起头来,右腿伸直朝向天花板(膝微屈,以避免肌肉紧张)。
-
The cost of moving grain food products was unchanged from May, but year over year are up 8%.
粮食产品的运输费用与5月份相比没有变化,但却比去年同期高8%。
-
However, to get a true quote, you will need to provide detailed personal and financial information.
然而,要让一个真正的引用,你需要提供详细的个人和财务信息。