英语人>网络例句>代数函数域 相关的搜索结果
网络例句

代数函数域

与 代数函数域 相关的网络例句 [注:此内容来源于网络,仅供参考]

Mastery: The Z-Transform, The Region of Convergence for the Z-Transform, The Inverse Z-Transform, Properties of the Z-Transform, System Function Algebra and Block Diagram Representations.

教学内容: Z 变换; Z 变换收敛域;逆 Z 变换;由零极点图对傅立叶变换进行几何求值; Z 变换性质;几个常用 Z 变换对;利用 Z 变换分析和表征线性时不变系统;系统函数的代数属性与方框图表示;单边 Z 变换。

The Laplace Transform; The Region of Convergence for Laplace Transforms; The Inverse Laplace Transform; Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot; Properties of the Laplace Transform; Analysis and Characterization of LTI Systems Using the Laplace Transform; System Function Algebra and Block Diagram Representations; The Unilateral Laplace Transform..

教学内容:拉普拉斯变换;拉普拉斯变换收敛域;拉普拉斯反变换;由零极点图对傅立叶变换进行几何求值;拉普拉斯变换性质;常用拉普拉斯变换对;用拉普拉斯变换分析和表征线性时不变系统;系统函数的代数属性与方框图表示;单边拉普拉斯变换。

Mastery: The Laplace Transform, The Region of Convergence for Laplace Transforms, The Inverse Laplace Transform, Properties of the Laplace Transform, Some Laplace Transform Pairs; Analysis and Characterization of LTI Systems Using the Laplace Transform, System Function Algebra and Block Diagram

基本要求:掌握拉普拉斯变换定义,拉普拉斯变换收敛域,拉普拉斯反变换,拉普拉斯变换性质,用拉普拉斯变换分析和表征线性时不变系统,系统函数的代数属性与方框图表示;熟悉常用拉普拉斯变换对,单边拉普拉斯变换;了解由零极点图对傅立叶变换进行几何求值。

Mastery: The Laplace Transform, The Region of Convergence for Laplace Transforms, The Inverse Laplace Transform, Properties of the Laplace Transform, Some Laplace Transform Pairs; Analysis and Characterization of LTI Systems Using the Laplace Transform, System Function Algebra and Block Diagram Representations;Roth Criterion;Mason Equation of the Signal Flow Graphs.

基本要求:掌握拉普拉斯变换定义,拉普拉斯变换收敛域,拉普拉斯反变换,拉普拉斯变换性质,用拉普拉斯变换分析和表征线性时不变系统,系统函数的代数属性与方框图表示,罗斯判别,信号流图的梅森公式;熟悉常用拉普拉斯变换对,单边拉普拉斯变换;了解由零极点图对傅立叶变换进行几何求值。

The Laplace Transform; The Region of Convergence for Laplace Transforms; The Inverse Laplace Transform; Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot; Properties of the Laplace Transform; Analysis and Characterization of LTI Systems Using the Laplace Transform; System Function Algebra and Block Diagram Representations; The Unilateral Laplace Transform.;Roth rule ;Signal Flow Graphs.

教学内容:拉普拉斯变换;拉普拉斯变换收敛域;拉普拉斯反变换;由零极点图对傅立叶变换进行几何求值;拉普拉斯变换性质;常用拉普拉斯变换对;用拉普拉斯变换分析和表征线性时不变系统;系统函数的代数属性与方框图表示;单边拉普拉斯变换;罗斯准则;信号流图。

First, a fundamental inequality about covering area character of the algebroid functions in angular domains was given, which is similar to the Nevanlinna secondary fundamental theorem.

首先给出了代数体函数在角域内覆盖面积特征的一个基本不等式,它类似于Nevanlinna第二基本定理。

By integral transformation of basic equations, the stress and displacement expressions with unknown coefficients of elastic and viscoelastic materials were obtained in Laplace domain respectively, and introducing dislocation density functions, the singular integral equations were got according to the boundary conditions and interface connection conditions, further adopting Gauss integration and Gauss-Jacobi integration formula, the problem was reduced to algebraic equations, then it can be solved with the method of collocation dots in Laplace domain. Finally, the time response of dynamic stress intensity factor was calculated with the inverse Laplace integral transformation.

采用积分变换方法,得到Laplace域内弹性和粘弹性材料的应力和位移的含未知系数的表达式;引入位错密度函数,并通过边界条件和界面连接条件,导出反映裂纹尖端奇异性的奇异积分方程组,采用Gauss积分,并运用Gauss-Jacobi求积公式化奇异积分方程组为代数方程组,利用配点法进行求解;最后经过Laplace逆变换,求得动态应力强度因子的时间响应。

The Laplace Transform; The Region of Convergence for Laplace Transforms; The Inverse Laplace Transform; Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot; Properties of the Laplace Transform; Analysis and Characterization of LTI Systems Using the Laplace Transform; System Function

教学内容:拉普拉斯变换;拉普拉斯变换收敛域;拉普拉斯反变换;由零极点图对傅立叶变换进行几何求值;拉普拉斯变换性质;常用拉普拉斯变换对;用拉普拉斯变换分析和表征线性时不变系统;系统函数的代数属性与方框图表示;单边拉普拉斯变换。

第2/2页 首页 < 1 2
推荐网络例句

I didn't watch TV last night, because it .

昨晚我没有看电视,因为电视机坏了。

Since this year, in a lot of villages of Beijing, TV of elevator liquid crystal was removed.

今年以来,在北京的很多小区里,电梯液晶电视被撤了下来。

I'm running my simile to an extreme.

我比喻得过头了。