代数几何的
- 与 代数几何的 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Moreover, multivariate splines are closely related with some topics in pure mathematics, such as, abstract algebraic, algebraic geometry and combinatorics.
另一方面,多元样条与基础数学的一些领域,如:抽象代数、代数几何、微分方程及组合数学等,亦有着密切关联。
-
The construction and decoding of algebraic geometry codes are one of the hotspots in modern encoding theory.
中文摘要:代数几何码的构造与译码问题是当前编码领域研究的热点课题之一。
-
Presents the methods of classical algebraic geometry.
介绍了经典的代数几何方法。
-
This paper discussed some unsolved problems of traditional multivariate polynomial interpolation problems with constructive algebraic geometry methods.
本文利用构造性代数几何方法研究传统多元多项式插值问题中的一些遗留问题。
-
The Todd polynomials were first studied in algebraic geometry and it is surprising that they play this fundamental role in classification of manifolds .
托德 多项式第一次被学习在代数几何并且它惊奇他们充当在多头管的分类的这个根本角色。
-
The algebraic geometry solutions of these new soliton equations are obtained with the help of Jacobi inversion.
再经过Jacobi反演,获得孤子方程的代数几何解。
-
Blending of implicit algebraic surface is an important issue in Computer Aided Design.
在计算机辅助几何设计和计算机图形学领域中,隐式代数曲面的光滑拼接是个重要问题。
-
All these results provide some theoretical foundation and justification for the DAE control system design.
这些工作一定程度上为电力系统基于微分代数模型的几何控制设计提供了理论基础。
-
The Riemann- Jacobi inversion is discussed to yield the final expression of explicit solution by means of the Riemann theta function, which is directly related to algebraic geometry.
为了最终生成由θ函数所给出的显式解,我们讨论了Riemann-Jacobi反演,这一过程直接关系到代数几何。
-
While awaiting its publication in book form, a provisional edition of 200 preprints has been sent to mathematical colleagues, especially algebraic geometers (who now do me the honor of remembering me).
在企待该回忆录最终印刷成书出版以前,两百本暂定版的预印本已在我的数学同行中散发,尤其是在那些代数几何学家之间,他们最近正在为我筹办庆祝纪念活动。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。