英语人>网络例句>代数几何的 相关的搜索结果
网络例句

代数几何的

与 代数几何的 相关的网络例句 [注:此内容来源于网络,仅供参考]

In the four section, from the interpolationdimension of an algebraic curve and an algebraic surface,using theoryand method of algebraic geometry, we get some interpolation of analgebraic curve and an algebraic surface, and we prove the reasonableof the interpolation dimension of an algebraic curve and an algebraicsurface.

第四章我们从沿代数曲线曲面空间的插值维数出发,利用代数几何理论与方法,给出了代数曲线曲面上的基本插值结构,并证明了我们长期应用的其上的插值维数公式的合理性。

In this paper, we summarize the foundations of Algebraic function fields, algebraic curves over finite fields and algebraic geometry codes, then we focus on the dimensions of codes on the quotient of the hermitian curves, by using the theory of weierstrass semigroup and the idea of Ho...

我们在系统地总结了代数函数域,有限域上的代数曲线和代数几何码的基本知识的基础上,利用Weierstrass子半群理论,使用Homma和Kim的方法,讨论了Hermite曲线商域上码的维数问题,得到的主要结果如下: 1。

As an important algebraic subject, rings are the base on Algebraic Geometry and Algebraic Number Theory.

环作为一门重要的代数学科是代数几何和代数数论的基础,有许多其它相关学科领域都涉及到环。

Computing integral closure of a finite extension is not only an important problem in commutative algebra, but also in algebraic geometry and algebraic number theory.

计算有限扩张的整闭包不但是交换代数中的一个核心问题,也很受代数几何以及代数数论发展的推动。

As thezeros of multivariate splines, the piecewise algebraic variety is a generalization of theclassical algebraic variety.

分片代数簇作为多元样条的公共零点集合,是经典代数簇的推广,它不仅和许多实际问题如多元样条插值,CAD和CAGD等有关,而且还为研究经典代数几何提供理论依据。

This paper discussed the theorem of the average arithmetic geometric mean of algebraic polynomials systematically, then derived and analyzed the original geometric programming briefly.

系统地讨论了代数多项式的算术-几何均值定理,并对原型几何规划理论作出了简明的推导与分析。提出了具有缩并迭代特性的几何规划求解理论和编程步骤。

This article takes the teaching of conic sections as an example. By designing worksheets, teachers can introduce the historical material about conic sections to students. By way of using Apollonius' definition of parabola, ellipse and hyperbola, teachers can introduce the geometric aspect of "conic section" to students. By using the concept of " latus rectum " in Conics , we can connect "conic sections"-- representation of geometrical aspect, with "the equation of conic sections"-- representation of algebraic aspect to improving insufficiency of text books.

同时本文也试著从历史文本中寻找材料,简单举例说明数学教师可以如何应用这些史料在几何单元教学上,例如三角函数的正余弦定理,最后再以圆锥曲线的正焦弦为例,说明如何利用数学史料於此单元的教学,尤其是阿波罗尼斯的《锥线论》中对圆锥曲线的3个命题,将此3个命题的内容与意涵,尤其是正焦弦在圆锥曲线的几何意义上所扮演的角色,将其适当地融入教学中,将可使学生真正学习圆锥曲线的几何知识,而不再只是代数形式的几何知识。

Furthermore, we define a convolution multiplication between characteristic functions of constructible subsets by using push-forward functor from the category of algebraic varieties over C to the category of spaces of constructible functions. We construct geometric model for "intrinsic symmetry" of the octahedral axiom in a triangulated category. Using it, we deduce the multiplication satisfies the Jacobi identity of Lie algebra and then realize infinite dimensional Lie algebras.

进一步,我们使用复代数簇范畴到可构函数空间范畴的pushforward函子,给出了可构集上特征函数的卷积乘法,并构造了三角范畴八面体公理的内蕴对称性的几何模型,最终证明了对于不可分解支撑有界可构集的特征函数,乘法满足李代数定义的Jacobi恒等式,从而给出了无限维李代数的实现。

Besides having a some insight into theinternal structure of operator algebras,it gives a greatimpetus to the development of modern mathematics towords thenon-commutative direction,especially to the developement ofnon-commutative geometry,non-commutative algebraical topologyas well as non-commutative algebraical geometry.

除了反映算子代数自身的内在性质之外,它还对于现代数学朝着非交换的方向发展起着积极的推动作用,特别对于&非交换微分几何&,&非交换的代数拓朴&,甚至&非交换的代数几何&等非交换的数学学科的发展具有重要的影响。

David Eisenbud, Commutative Algebra with a view toward Algebraic Geometry

高级的代数几何、交换代数的参考书,最新的交换代数全面参考

第2/15页 首页 < 1 2 3 4 5 6 7 8 9 ... > 尾页
推荐网络例句

This one mode pays close attention to network credence foundation of the businessman very much.

这一模式非常关注商人的网络信用基础。

Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.

扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。

There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.

双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。