代数几何的
- 与 代数几何的 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Linear Algebra is mainly a subject which studies the linear structure of finite dimensional linear space and its linear transformation while linear concept is in itself from the old Euclid Geometry. The concept of "Linear Space" is a kind of algebraic abstract. In many fields of modern engineering project and technology, because of the influence of computer and graph showing, the algebraic disposal of geometric questions, the visual disposal of algebraic questions, algebra and geometry are tightly combined.
线性代数主要是研究有限维线性空间及其线性变换这一代数结构的学科,而线性概念究其根源则是来自古老的Euclid几何,线性空间概念是几何空间的一种代数抽象,在现代工程技术的许多领域里,由于计算机及图形显示的强大威力,几何问题的代数化处理,代数问题的可视化处理,把代数与几何更加紧密地结合在一起。
-
This paper first summarizes recent researches on this topic, and then proposes some methods for curve modeling with cubic algebraic curve based on pure geometric constraints that involve control points, tangent directions and curvatures.
然后提出了一种基于几何约束的三次代数曲线的插值方法,该方法完全通过几何量如控制顶点、切线和曲率来控制三次代数曲线的形状,使得对三次代数曲线的编辑与对三次 B-样条曲线的编辑一样灵活方便。
-
The paper applies algebraic geometry, computational geometry, approximation theory to study the following problems: the Nother type theory and the Riemann-Roch type theory of the piecewise algebraic curve; the number of real intersection points of piecewise algebraic curves; the real piecewise algebraic variety and the B-net resultant of polynomials.
本文应用代数几何,计算几何,函数逼近论等学科的基本理论,分别就分片代数曲线的Nother型与Riemann-Roch型定理;分片代数曲线的实交点数;实分片代数簇以及多项式的B-网结式进行研究。
-
Algebraic K-theory is an important branch of algebra which has deep relationships with other branches of mathematics such as algebraic number theory, algebraic geometry and algebraic topology.
代数K-理论是代数学的一个重要分支,它与数学中代数数论,代数几何和代数拓扑等其它分支有深刻的联系。
-
The vector has the rich actual background and the widespread application function, it has the algebra and the geometry dual statuses, causes the algebra geometrization, the geometry algebra, has communicated the algebra, the geometry and the trigonometric function, has the good analysis method and the complete structure.
向量具有丰富的实际背景和广泛的应用功能,它具有代数和几何双重身份,使代数几何化、几何代数化,沟通了代数、几何与三角函数,具有良好的分析方法和完整的结构。
-
The multivariate polynomial interpolation problem is a classical mathematical problem that is widely used in many fields, such as multivariate function list, surface design and finite element method. In recent years, multivariate polynomial interpolation has been focused by many people, of which the geometric topological struction of sets of interpolation nodes is also much concerned by us.
多元多项式插值问题是一个十分具有研究意义和实际应用价值的数学问题,它广泛应用于多元函数列表,以及曲面的外形设计和有限元法等诸多领域,近年来多元多项式插值越来越受到人们的广泛关注,其中有关插值结点组的几何拓扑结构问题也是人们十分关注的内容。1998年,梁学章和吕春梅在文献[2]中借助代数几何中的有关理论,进一步讨论了沿无重复分量平面代数曲线上的Lagrange插值问题,并应用Cayley ?
-
The questions covering pre-algebra and elementary algebra make up the Pre-Algebra/Elementary Algebra Sub score. The questions covering intermediate algebra and coordinate geometry make up the Intermediate Algebra/Coordinate Geometry sub score. The questions covering plane geometry and trigonometry make up the Plane Geometry/Trigonometry sub score.
包含有基础初等代数和初等代数的考题构成了基础初等代数/初等代数的技能分数,涉及到中等代数和坐标几何的考题构成了中等代数/坐标几何的技能分数,而涵盖平面几何和三角函数的考题则构成了平面几何/三角函数的技能分数。
-
Its main goal is to explore information in the K-theory groups of the index C*-algebras, the Roe algebras C*, by using the large-scale geometrical structure of proper metric spaces, including noncompact complete Riemannian manifolds, finitely generated groups, etc., so as to establish connections among geometry, topology and analysis of the geometric spaces, and furthermore, to solve other relating problems, say, the Novikov conjecture, the Gromov-Lawson-Rosenberg conjecture on positive scalar curvature, the idempotent problem in the theory of C*-algebras.
粗几何上的指标理论是"非交换几何"领域九十年代以来发展起来的重要研究方向,它孕育于非紧流形上的指标理论,其主要目标是通过几何空间(如非紧完备黎曼流形、有限生成群等)的大尺度几何结构探索指标代数,即 Roe代数,的K-理论群的信息,从而建立几何空间的几何、拓扑与分析之间的联系,并应用于解决其他重要问题,如Novikov猜测、Gromov-Lawson-Rosenberg正标量曲率猜测、群C*-代数幂等元问题等。
-
By utilizing the concepts and methods developed in Algebra Topology,Algebra Geometry and Algebra Representations,we first depicted the concepts and results of Incidence Algebra which reflects the linear structure of underlying posets and Sheaf theory which reflects the topological structure of underlying poset in the framework of Category Theory.
本文综合运用了代数拓扑、代数几何及代数表示论里发展起来的概念与方法,首先在范畴的框架下,对和偏序集的线性结构密切相关的Incidence代数,及与偏序集的拓扑结构紧密联系的层,进行了刻画。
-
The author deals with algebraic varieties, the corresponding morphisms,the theory of coherent sheaves and, finally, The theory of schemes.
本书结构框架清晰,叙述简明扼要,可以帮助读者在很短的时间内了解并掌握代数几何的精华。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。